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Resumo

Esse projeto Mecatrénico visa o reconhecimento de impressdes digitais
utilizando-se dois métodos, um com redes neurais e o outro atraves da
extragéo de caracteristicas das impressées. A ideia é no final comparar os
resultados obtidos pelos dois métodos chegando a conclusdes a respeito de
qual deles € o mais apropriado para fazer esse tipo de reconhecimento.
Nesse projeto as impressdes serdo coletadas através de um scaner e entéo
processadas pelos dois métodos, vale observar aqui que ambos os métodos
foram programados em C++ Builder..

O método de redes neurais visa encontrar padrées no campo de orientagao
das impressoées digitais e através desses padrdes poder realizar um
reconhecimento positivo do individuo.

Ja a extracao de caracteristicas visa encontrar pontos que caracterizam aquela
determinada impressao e através desses pontos identificar se é o individuo ou
nao.

Esse projeto foi escolhido devido ao seu imenso campo de implantagao e a
caréncia de seguranga que existe em muitos-sistemas atualmente, melhores

exemplos serdo dados a seguir.



1. Introducéo ao Reconhecimento de Impressodes Digitais

1.1. Histdrico

A impressao digital € uma caracteristica humana conhecida ha muito tempo.
Desenhos representativos da mesma ja foram encontrados até em cavernas
pré-histdricas. Falando-se em tempos mais recentes, por volta do ano 1856,
um ingiés chamado Sir William Hershel comegou a utifizar impressées digitais
em contratos. Ele era um administradar na india, e estava muito desapontado
com ©0s nativos, pois esses ndo costumavam honrar seus contratos sé porgue
os haviam assinado. Nesse caso, porém, a utilizagdo de impressdes digitais
como forma de identificagdo ndo tinha nada de cientifico, tinha sim um tom
supersticioso. Hershel acreditava que por deixar uma marca de seus corpos

nos contratos, os nativos deixariam de renegar os mesmos.

Foi nesse mesmo século (séc. XiX) que cientistas comecgaram a se interessar
por impressbes digitais, mas muito antes disso, as sociedades estavam
interessadas em métodos que pudessem identificar iransgressores. Por
exemplo, 0s romanos costumavam tatuar mercenarios, para que suas tropas
soubessem com que tipo de pessoa estavam lidando; alguns paises

costumavam cortar uma das maos de um ladrdo, como uma forma de penaliza-



lo por furtar objetos. Mas conforme o mundo foi se tornando mais civilizado,

essas praticas foram sendo abolidas.

No comego do século XIX, Alphonse Bertillon desenvolveu o primeiro método
cientifico para a identificacdo de individuos. Esse método, chamado
Bertillonage, consistia da medida de varias caracteristicas do corpo de uma
pessoa, como o tamanho do peé, largura da cabeca, clbito (distancia entre a
ponta do dedo indicador e o nariz, com o brago esticado para o lado, na altura
do ombro). Associado a essas medidas, havia uma série de outras
caracteristicas, como cor de olhos e pele, fotografias de frente e lado e nome

do individuo, ¢ que compunha a ficha da pessoa.

Esse método se espalhou rapidamente, com varias regides do mundo o
utilizando. Mas ent&o, comegaram a surgir alguns problemas. Conforme
cresciam o nimero de pessoas registradas, mais dificil era de localizar alguém,
pois o numero grande de fichas atrasava o processo. Outro problema era a
padronizacio das medidas. As formas de se medir podiam variar de localidade
para localidade, o que podia gerar confusdes. Mas esses dois problemas
podiam ser contornados de certa forma, mas um terceiro problema aconteceu e
decretou de vez o fim do uso desse método: as medidas nac eram tnicas para
cada individuo. No ano de 1903, um homem chamado Will West foi preso.
Embora afirmava que era a sua primeira vez na prisdo, o regisiro da policia ndo
confirmava igso. Havia um registro com ¢ nome de Willian West, com medidas
praticamente idénticas e fotografias muito parecidas. Wili West teria uma pena

maior por ser considerado reincidente, ndo fosse um pequenc detalhe: Willian



West ainda estava preso, e ndo poderia ser Will West. Um exame de suas

impressodes digitais constatou que realmente ndo eram a mesma pessoa.

Voltando & india, Sir Willian Hershel, depois de ter registrado um grande
numero de impressdes digitais, percebeu que essas eram diferentes para cada
pessoa, e que, sendo assim, poderiam ser utilizadas para identificagdo. E
percebeu mais, as impressdes n&o mudavam durante a vida, o que ocorria com
outras caracteristicas fisicas. Qutros pesquisadores, como Dr Henry Faulds e

Sir Francis Gaiton chegaram & mesma concluséo.

Porém, ainda existia o problema do grande numero de registros, o que
atrasava bastante um processo de identificag&o. Era preciso inventar um
método de classificagdo, que dividisse as impressbes em algumas classes,
para agilizar o processo. Henry Faulds inventou um método para essa
classificac@o, usado até hoje, enquanto Francis Gaiton conseguiu provar que
as impressées digitais ndo mudam durante a vida e que s80 Unicas para cada

individuo; a chance de duas idénticas é de 1 em 64 bilhdes.



1.2. introducgéo

A identificacdo pessoal na atualidade tornou-se um problema critico, por isso
ela deve ser feita através de um processo que propicie 0 maximo de confianca.
Um exemplo dessa necessidade é controle do acesso de pessoas a certos
privilegios e facilidades em computadores, dado que esse acesso feito peia
pessoa errada pode levar essa pessoca a ter informacdes confidenciais de
empresas, bancos etc. $6 para reforgar a importancia da identificagdo pessoal

atualmente aqui estéo alguns ntimeros;

» Em torno de um bithdo de délares em beneficios de previdéncia social sdo
roubados nos Estados Unidos todo ano através de golpes utilizando falsas

identidades;

» A MasterCard estima que a falsificacdo e roubo de cartdes de credito leva

450 milhdes de ddlares todo ano;
> 1 bilh&o de dolares em ligagbes de celulares roubados s&o feitos todo ano ;

» O departamento de Imigracdo e Nacionalizac&o dos EUA estima que 3000

imigrantes ilegais entram pela fronteira com México

Como mostrado, o prejuizo com problemas de identificac&o s&o muito grandes.
Por exemplo, se houvesse um método confidve! & barato de confirmacao da
identidade do dono de um cartéo de identificagso, poderia diminuir a perda com

fraudes e roubos em até 3 bilhdes anualmente. Por isso o interesse em uma



forma confiavel e barata de identificago em dreas como a comercial, &

financeira , a civil etc... tem aumentado a cada dia.

Ha dois tipos de abordagem para o problema da identificag&o de individuos:

Verificagdo e Reconhecimento.

A Verificaggo trata basicamente de confirmar ou negar a identidade de uma
pessoa, enquanto o Reconhecimento se preocupa em estabelecer a identidade

do individuo.

Normalmente, tanto na Verificagdo como o Reconhecimento, uma pessoa é

identificada de duas maneiras:
» Através de algum objeto que o identifique, uma chave por exempilo;
> Através de alguma coisa que s6 vocd saiba, uma senha por exemplo.

Outra abordagem para a identificacdo pessoal, e gue sera visada nesse
trabalho, é baseada no reconhecimento de caracteristicas da pessoa. As
caracteristicas podem ser tanto fisicas, como impresséo digital, formato da méao
etc. como de outros tipos, voz, assinatura, etc. A esse tipo de abordagem é
dado o nome de biométrica. Como as caracteristicas bioidgicas ndo podem ser
esquecidas, como senhas, e ndo podem ser faciimente falsificadas, como
chaves, esse tipo de abordagem é considerado o mais confidvel método para a

identificagdo pessoal.

O advento das redes de computadores mais velozes possibilitou o surgimento
de novas oportunidades para utilizacdo desse tipo de tecnologia, visto gue o
processamento e recebimento de dados pode ser feito através dessas redes

mais velozes.



O padrdo de fluxc de vales e cristas existente na palma das méos é chamado
de impress&o da paima. A formacdo dessa impressac depende das condigbes
iniciais da mesoderme embrionaria, por isso cada individuo possui uma
impressao diferente do outro. Logo usar a impresséo digital para identifica¢ao,
visto que ela faz parte dessa impresséo da palma, é bastante confiavel porque
cada um possui a sua, mesmo que elas sejam gémeos idénticos suas

impressdes digitais seréo diferentes.

A impressdo digital € uma das mais naturais tecnologia biométrica de
identificacdo e é considerada uma prova legitima em tribunais do mundo inteiro,
por isso elas sdo utilizadas nas divisdes criminais das policias pelo mundo todo
como uma forma de pegar os criminosos. Mas agora o uso de impressdes
digitais esta aumentado entre as pessoas comuns e areas comerciais, esse
aumento é devido a melhoria do desempenho dos leitores de impressdes e do
processamento das imagens adquiridas, logo a analise das impressdes digitais

tornou-se o tipo de reconhecimento biométrico mais comum.



1.3. Aplicacao

Muitas s&o as aplicagdes para o reconhecimento de individuos através de suas
impressdes digitais, como ja mencionado no item 1.2. O nosso trabalho visa
reconhecer uma pessoa como cadastrada, ou n&o, num pequeno banco de
dados. Esse reconhecimento seré realizado por verificacdo de uma a uma das

impressées registradas.

O trabalho consiste de duas abordagens diferentes para o processo de
reconhecimento. A primeira abordagem, explicitada no capitulo 2 desse
trabalho, trata de extragfio de caracteristicas das impressdes, enquanto a
segunda abordagem, contida no capitulo 3, utiliza redes neurais para

identificag&o dos parametros das digitais.



1.4. Representac¢do da impresséo Digitai

Uma imagem de uma impressé&o digital é formada por cristas e vales, sendo a

primeira os filetes mais altos e o segundo as depressdes existentes entre elas.

As caracteristicas importantes na representacdo de uma digital s&o

basicamente trés:
» Pontos singulares;
» Campo de orientagdo;

» Mintcias da digital.

1.4.1 Pontos Singulares

Pontos Singulares s&o pontos especiais numa impresséo digital. Pontos onde
ha uma curvatura bastante acentuada sdo chamados de "core" , e regifes onde
ha a formacdo de uma espécie de tridngulo, ou melhor, um delta (como os dos
rios) s4o chamadas de "deita"(ver figura 1.1 ). Esses pontos s&o geralmente
utilizados na classificagdo de uma impress&o digital. A classificacdo de uma
impressao digital € Util quando se trabalha com bancos de dados muito
grandes, pois divide as impressées digitais em algumas classes, agilizando o
processc de comparacdo. Esses ponios podem ser também utilizados como

pontos de referéncia, quando do alinhamento das imagens na comparacéo.



Figura 1.1 — Mimiicia(0), Delta(A) e Core()

1.4.2. Campo de Orientagio

Campo de Orientagdo é o conjunto de diregdes que os pontos caracteristicos
da impress&o digital possui, ou seja, cada ponto caracteristico da digital estd
localizado em cima de um vale ou de uma crista, sendo que tanto um quanto
outro possuem uma trajetdria e a diregdo dessa trajetéria nesses pontos
especiais € que formam esse campo de orientagdo. A figura 1.2 mostra o que é

um campo de orientagio.

Esse campo também é de fundamental importancia para a identificacdo
porque, diferentemente do caso anterior, ele serve como caracteristica de

comparagao entre as digitais em processo.
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Figara 1.2 - Campo de Orientagiio

1.4.3. Minucias da Digital

As minticias de uma digital s80 as principais caracteristicas da mesma, € o gue
elas s&o na verdade é o encontro de duas cristas ou a criacdo de uma crista. A
fig. 1.3 ilustra methor o que s&o esses pontos. A comparagio da existéncia ou

nao dessas minticias é a base do processo de identificacio das digitais.

e

Fingl de Cricta Bifurcagdo na Crista

m— e

Figura 1.3 - Tipos de Mimicias
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1.5. Processo de Preparagdo da imagem

Ha uma série de procedimentos necessérios para realizar o reconhecimento de
uma impresséo digital, tanto pelo método de extracdo de caracteristicas como
pelo de redes neurais. Mas a principio deve ser feita uma preparagdo da

imagem da impress&o, como ilustra o esquema da figura 1.4.

Obteng&o da imagem

/ \

Célculo do Campo Realce (enhancement)

v v

Treinamento da

Rede Aflnjmento
Classificacéo e Extracdo das
Reconhecimento Caracteristicas

Figura 1.4: Sequencia de passos para o reconhecimento

Quanto a obtengédo da imagem, ele se dara pelo método tradicional: utilizando
uma folha de panet e tinta. Uma vez coletada a imagem, ele sera escaneada e
gravada em um arquivo. Essas imagens tem tamanho 512x512 pixels, e

resolucac 480 dpi.
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2. Método da Extracdo de Caracteristicas (Implementacg&o)

Essa parte do projeto trata da implementacéo do software que realizara a
identificac&o por meio de extragéo das caracteristicas. Alguns procedimentos
descritos aqui s&o comuns a ambas as abordagens do projeto, e n&o serdo
repetidos na proxima parte. Os passos da impiementacédo seguem o diagrama

representado no item 1.5.

% Fingerprint Identificator

s
L
o LWl

Original Image ————— —— Thinngd Image————

é

——Enhanced Image-— =4l & — Minutiag Image——

Figura 2.1 - Tela do Programa
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2.1. Converséao de Imagem

Uma vez que se obtém a imagem através de um scanner, no formato
especificado (ver item 1.5), devemos converté-la em uma matriz de nameros
inteiros. Para apresentar os resultados das diversas operacdes na tela do
programa, é necessario também uma convers&o de uma matriz de inteiros para

uma imagem.

As imagens das impressdes devem estar em tons de cinza. Ou seja, tém pixels
variando entre O (preto) e 255 (branco). Porém, embora obtidas em tons de
cinza, 0 programa interpreta as cores da imagem com o sistema RGB
(Ox000000 para preto e OXFFFFFF para branco). Para os tons de cinza, as trés

cores (Red Green Blue) tem mesma intensidade.

Na conversédo Imagem-> Inteiros, devemos transformar um numero de 6 digitos
hexadecimais em um de apenas 2. Uma vez que a intensidade para as trés

cores do RGB é igual, basta pegar uma delas:
Cor (tons de cinza) = Cor (RGB) & OxFF

Na converséo Inteiros=Imagem, devemos fazer a operacédo inversa. Basta

pegar a intensidade e aplica-la nas trés cores do RGB.
Cor (RGB) = Cor (tons de cinza)*(1+256+2563)

Cor (RGB) = Cor (tons de cinza)*65793
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2.2. Realce (Enhancement)

O enhancement é um procedimento de grande utilidade no processo de
reconhecimento. Conforme a qualidade da imagem obtida, a n&o realizacéo de

um processo de enhancement pode levar a erros graves [1,3], como:
¢ Criagdo de um grande ndmero de mindcias aleatérias
+ Perda de boa parte das mintcias verdadeiras

» Erro na localizagéo (posi¢do e orientagdo) das mintcias
2.2.1. Notagédo

Para o completo entendimento do processo de enhancement, é necessaria

uma lista de notagbes [3] que seréo utilizadas nos proximos itens.

Chamaremos de I a imagem de uma impresséo digital em tons de cinza, e a
definiremos como uma matriz quadrada (NxN) onde I(ij) representa a

intensidade do pixel da i-ésima linha e j-ésima coluna.

A media e a variancia de I s8o definidas pelas seguintes equacdes :

M=~ ¥ 316.)

i=0 j=0

VAR() = #EE(I("J)—M Oy

i=0 j=0
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A imagem de orientagdo, O , é definida como uma matriz NxN, onde O(i,j)
representa a orientagdo local da crista no ponto (i,j). No nosso trabalho, a
tmagem sera dividida em blocos WxW e sera calculado apenas um valor de

orientacéo para cada bloco.

Por fim, a imagem de frequéncia, f, também é uma matriz NxN, com f(i,j)
representando a frequéncia local da crista. Esse valor é definido como a
frequéncia das cristas e vales numa certa vizinhanga, na diregdo perpendicular

a direcdo de orientagdo. Novamente, utilizaremos céiculos em blocos WxW.

2.2.2. Algoritmo

O processo de enhancement é dividido em varias etapas [3]:
¢ Normalizagdo
o FEstimativa do Campo de Orientacdo
» Estimativa das Frequéncias Locais

¢ Filtragem

2.2.2.1 Normalizacéo

Dada a definicdo de média e variancia de I, podemos definir a imagem

normalizada G(i,j) como:
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Gli, /)= M, + \/ VAM]%Q ~MY , casoI{ij) >M

o I 2
G, j)=M, - \/ VAR, (ISA::{) M) , €aso contrario

O processo de normalizagéc determina um novo valor tanto para a média
quanto para a variancia. N&o objetiva uma melhoria na imagem, e sim, reduz a
variagéo dos tons de cinza ao longo da imagem, o que auxilia todos os

processos subsequentes.

A figura 2.2 mostra uma imagem normal e uma normalizada. Os valores

utilizados para média(M,) e variéncia(VAR,) sdo, respectivamente, 128 e 4000.

Inmagerm Ovigmal
Figura 2.2 — Imagem Original ¢ Normalizada

2.2.2.2. Estimativa do Campo de Orientagéo

A obtencéo do campo de orientacdo (ou imagem de orientagéo) se dé a partir
da imagem normalizada G. Os principais passos para a obtengéo desse campo

sao [3]:
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1) Dividir G em blocos de tamanho WxW (16x16)
2) Calcular os gradientes () de cada pixel, nas direcbes x e y.

Estimar 0 campo de orientacdo em cada bioco utilizando as seguintes
equagdes:
1+W

V., 7)= z 226 {, v)a (,v)

u=i-W, /v—,r /2

:+W/ _;+W

AWE Z Z(az(u v)-02(u, v))

wsi W vej W

66./)= %tan[V—(i)J

v,G.J)
Matematicamente, isso representa a direcéo ortogonal & direcdo dominante do
Espectro de Fourier dentro de cada bloco.

4) Devido a presenca de ruidos, mindcias, etc..., a estimativa do campo de
orientacédo nem sempre é muito correta. Uma vez que 0 campo n&o apresenta
variagdes muito bruscas em regides onde ndo ha mintcias ou ruidos, um filtro

passa-baixas pode ser utilizado para modificar as orientagées incorretas.

Para realizar essa filtragem, devemos converter a imagem de orientac&o num

vetor continuo, segundo segue abaixo:
@, (i, /)= cos(26(, j))

@, (i, j) = sen(26(, ))
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Com essas componentes do vetor do campo, podemos aplicar a filtragem:

Wy /2

)= 3 S W0, —wn, - w)

u=fg [2v=-Wy 2

!
Wy 12

O6N)= S SN0, (-, j-w)

u=—Wy ;2 v=—W '2

E, finalments, recalcular o campo de orientacao:

0(..))= %tan(%}

y

O célculo dos gradientes pode ser efetuado de diversas maneiras. Duas

maneiras foram propostas nesse trabalho: Operadores Simples e de Sobel,

Os Operadores Simples se baseiam numa diferenca simples enfre um pixel
adjacente e o pixel onde se calcula o gradiente. As equacgSes seguem abaixo,
notando-se que a diregdo “z” nada mais é que a dire¢&o oposta a “X’, isto &,

z=-x. G motivo da utilizagdo desse outro eixo sera explicado mais adiante.
0, =Gli+1/)-GG, )
9, =G, j+1)-GG,)
8, =Gli-1,/)-G(,))

Os Operadores de Sobel também se baseiam em diferencas, porém, nesse
caso, se faz a diferenga entre 3 pixels a frente do pixel no qual se quer calcular

o gradiente e 3 pixels atrés.
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11 | i1 |1,

a" | 0| i

v H1j-1 1 i+1,j |i+1,j+1

0, =Gl +1,j-1D)+2G(+1,j)+ G +1, j +1)- Gl -1, j - 1)-2G(i -1 /) - Gl -1, j +1)
8, =Gli-1,j+1D+2G(, j +1)+Gli+1, j+1)- Gl -1,/ —1)-2G(, j - 1)- G(i +1, /- 1)
0, =Gli-1,j-1)+2G(-1,/)+ Gl -1 j+1)-Gli+1,j - 1)-2G( +1, /) -G +1, j + 1)

O célculo do campo de orientagéio através do uso de V, e Vy é valido, desde
que se tome certos cuidados. Por exemplo, quando Vy for muito menor que V
o resultado da diviséo tenderia a infinito, 0 que & invidvel em termos de
programacéo. Além disso, desejamos obter valores de anguio entre 0° e 180°,
n&o interessando valores negativos. E necessério, entdo, converter diregbes

dadas por angulos negativos em diregdes com angulo positivo correspondente.

Afim de realizar uma anélise mais profunda a respeito do célculo do campo de
rotacao, devemos primeiramente entender como se comportam as variaveis V,

e Vy ao longo das possiveis dire¢bes.

Figura 2.3 - Imagem Original ¢ Gradicntes Simples ¢ de Sobel
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A variavel Vy representa a diferenca entre gradientes na direc8o x e y. Por
exempio, a 0° ha muitos pixels com gradiente em x, mas sem gradientes em y.
Portanto, para esse angulo, Vy atinge valor méaximo. Conforme vai se inclinando
a diregéo, véo surgindo gradientes na diregéo y, o que reduz o valor de Vy.
Quando a direcde atinge 45°, os gradientes nas direcbes x e y se igualam,
resultando em Vy nulo. Com 90° atinge-se o valor minimo. O raciocinio

prossegue idéntico até 180° .

A variavel Vi é mais complexa de se fratar, e traz complicagBes na
implementacdo do programa. Quando os pixels sé apresentam gradientes em
uma unica dire¢éo (casos do 0° e 90°%), V, é nulo. Conforme vai se aumentando
0 angulo a partir de 0° véo surgindo alguns pixels com gradientes nas duas
diregSes. Além disso, esses gradientes tém mesmo sinal, o Gue resulta em Vy
positivo. No angulo de 45° V, atinge seu valor maximo, pois todos os pixels

com gradiente em x também possuem gradiente em y, e vice-versa.

Os problemas surgem a partir do angulo de 90°. Pegue o exemplo de uma linha
de espessura de 1 pixel e angulo 135°. Os Unicos pixels gue apresentam
gradientes nos dois sentidos sdo os pixels que compdem a linha. E como esses
gradientes tém mesmo sinal, gera Vy positivo. Porém, se a linha tiver espessura
de 2 pixels (de mesma intensidade), nenhum pixe! terd gradientes nos dois
sentidos, o que resulta em V, nulo. Nesses dois casos, apesar das linhas terem

mesma inclinacdo, teriamos resultados diferentes.

Porém, as linhas de uma impressdoc ndo sido formadas por pixels de mesma
intensidade, e essa hipdtese sera utilizada nos raciocinios seguintes. Nesses

casos, teriamos alguns pixels (aqueles que se localizam no centro das cristas)



21

com gradientes de mesmo sinal e outros pixels (em maior quantidade, nas
bordas das cristas) com gradientes de sinal contrario. Teriamos, entéo, V
negativo. De fato, alguns testes com o programa indicam que Vy é realmente

negativo para angulos maiores que 90°.

A figura 2.4 mostra um esquema do comportamento das variaveis Ve e Vy ao

longo dos diversos angulos:

0 45 90 135 180

P A"

Vx

I I | oI { v X1 iII/VIII

e

Figura 2.4 - Comportamento das Varidveis Vx e Vy

Devemos, entretanto, prestar atencdo num detalhe. Quando calculamos o
angulo para uma direcio de 45°, temos um certo V, gue s6 recebe valores
positivos. No caiculo de 135°, V, recebe valores negativos, mas também pode
receber alguns positivos, o gue pode gerar imprecisio no célculo desse angulo.
Fara corrigir esse problema, e tentar extrair somente os valores negativos,
utilizamos o eixo z, definido anteriormente. A figura 2.5 mostra como funciona a

utilizacéo desse eixo.
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‘L

¥ II

Figura 2.5 - Utilizagiio do cixo Z

O quadro | mostra o calculo com os eixos normais, de uma reta com inclinagéo
menor que 90°. Para uma inclinagdo maior que 90°, utilizamos o eixo z ao invés
de x. Nota-se que o quadro Il nada mais é que a imagem espelhada do quadro
l. Se fizermos os célculos para ambos os quadros, obteremos o mesmo
resultado. Isso elimina a obtengéo de valores positivos e negativos para V,

tornando o processo mais preciso.

Como podemos perceber (ver fig. 2.4) , cada um dos 8 trechos de angulo tem

sua peculiaridade no caiculo, e requerem uma adaptacéo da formula.

Trecho | - Utiliza-se a equag&o normalmente, sem alteracses.

v,G.J)
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Trecho li — A diferenca entre esse trecho e o anterior & que nesse, Vy se toima
maior que Vy. Quando essa diferenga for muito grande, o resultado tende a
infinito, 0 que n&o & vidvel em termos computacionais. Para solucionar esse
problema, podemos inverter Vy e V, no calculo do angulo. Porém, isso
resultaria no no &ngulo correto, e sim no seu complemento para 90°. Basta,

entdo, subtrair de 90° 0 &ngulo obtido.

oo (355

Trecho Hll — Nesse trecho, assim come no préximo, a relagdo entre Vy e Vy €
negativa, 0 que gera um angulo também negativo. Devemos transformar esse
éngulo no seu correspondente positivo, bastando somar 180°. Como nesse

trecho Vi € maior que V,, também & necessério fazer a inversdo como ro

trecho 1.
Vi
9(’:])':_1' 180° + —Qoo_tan-l y(ln.])
? v.G.))
Trecho IV - Como j& mencionado no trecho Ill, basta corrigir o angulo
negativo.

66, /)= %(1 80° + tan ! (MD

v,G.7)
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Trecho V — Esse trecho, assim como os préximos, é identificado por ter um V,
negativo. Porém, Vy n&o é utilizado nos célculos, sendo substituido por V.
Como essa substituico gera um efeito de espelhamento, o célculo nesse
trecho € igual ao trecho IV. Porém, o angulo obtido nio é o correto, e sim o

complementar para 180°.

o (1 (V)
oo {240

Trecho VI - Utilizando raciocinio andlogo ao do trecho V, esse trecho & igual

86, )= 180° _[%(1800 +(— 90° — tan I[ Zv gg]m

ao trecho lll.

Trecho Vil — ldem, mas referente ao trecho |l.

o - o {2

Trecho Vill — idem, mas referente ao trecho |.

06, /)=180° —[%tan[mﬂ

V,G.)
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Uma vez calculados todos os &ngulos (ainda sem a filtragem), podemos

representé-los na prépria impresséo digital, comoe vemos na figura 2.6.

Figura 2.6 — Campo de Orientacio

O proximo passo & filtrar 0 campo de orientagdo. Considerando que numa
regifo onde ndc h& singularidades a orientacdo das cristas ndo muda
bruscamente, aplicarei um filtro para eliminar possiveis mudangas bruscas. O
filtro & baseado numa média ponderada das orientagées ao redor do ponto que
se deseja corrigir [3]. Porém, calcular média de angulos n&o € uma tarefa facil,
principalmente quando esses representam diregdes. Por exemplo, a diregéo
179" e a diregdo 1° séio muito préximas, tendo como média 0°, e ndo 90", que

seria o resultado de uma operagéo aritmética.
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Para resolver o problema, os valores de angulos séo dobrados (179" passa
para 358, e 1" para 2, e portanto, ficando mais proximos) e séo divididos em
valores de seno e cosseno. No exemplo utilizado, teriamos valores de cosseno
iguais para 2" e 358", e valores de seno iguais em médulo, mais de sinais
trocados. Portanto, a média do seno seria 0, e a do cosseno, um valor préximo
de 1. A tangente teria, entlo, valor nulo, e o angulo correspondente seria 0 0,

como desejado.

Uma vez que se trata de uma média ponderada, devemos atribuir pesos para o

filtro. A principio, com base empirica, determinei os seguintes pesos:

1 1 2 1 1

Figura 2.7 — Filtre do Campo

Porém, alguns pontos particulares apresentavam resultados ruins apos o uso
do filtro. Esses pontos estéo situados na regisio dos pontos core, que, conforme
explicado anteriormente, s&o os pontos que apresentam invers&o na orientacdo
proxima de 180°. Nessas regides, os anguios mudam de forma t&o brusca que
n&o faz sentido algum calcular uma média. Seria preciso, entdo, desenvoiver
um processc gue identificasse as regifes onde néo fizesse sentido calcular a
média, e entdo, ndo mexer na orientagdo j& calculada para essa regido. Aqui se

assume um risco, pois pode-se estar deixando de filtrar uma regigo. Porém,
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considero risco maior (o que os testes confirmaram) calcular uma média que
poderia assumir qualquer valor, e que, portanto, dificimente seria o valor

correto.

Além disso, tal processo deveria manter & filtragem para as regides
consideradas boas. Para isso, dividi o filtro (5X5) em 4 filtros menores (3X3), de
tal forma que o filtro resultante da sobreposicdo (parcial) desses filtros fosse

igual ao filtro obtido anteriormente (fig. 2.7).

Figura 2.8 — Filtros Parciais e Final

A ideia de utilizar 4 filtros distintos é determinar se faz sentido calcular a média
para uma tal regido. Cada um desses filtros leva ao caiculo de uma média

parcial. Numa regido normal, as médias dos 4 filiros devem ser proximas, e
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numa regido irregular, as médias s5c bem distintas. Para determinar se uma
regido € irreguiar ou n&o, compara-se as médias parciais obtidas, e determina-
se a maior diferenga de valores entre elas. Se essa diferenca for maior que 60,
a regido é considerada ruim. Deve-se notar que o valor méximo dessa
diferenga é 90°. Por exemplo, a diferenga entre as diregdes 10° e 170° ndo é

160°, e sim 20", pois a direg&o 170° & igual & diregao —10".

No que se refere ao célculo das médias, sejam elas parciais ou total, devemos
novamente ter muita atengéo. Deve-se realizar a soma ponderada dos senos e
cossenos dos angulos, e com base nesse resultado, obter a tangente média e
por conseguinte a orientagdo média. Porém, a maneira de calcular essa média
varia conforme os valores de somax (soma dos senos) e somay (soma dos

COSSENOS), COMO vemos abaixo:

Somax > 0 Somax <0
[Somax| |1 (g s 1({3n
© |maiorque = |— — tg“l(—D == - ”{S—-D
S |Somay]| 22 SX 2\ 2 SX
€ |[Somaxj 1( s 1 5
& |menor que |= tg’l(——%] —i2r + t ‘{—X
|Somay| 2\ SY 2\ N
[Somax| 1({n 3 1 (3n g
S |maiorque |—~|— - tgkl(——D —| = - tg‘l(—D
‘;‘ ISomay| 22 SX 2\ 2 SX
©
£ |ISomax| 1( (s 1f L 8x
»w menorque |— | T + tg | — —|mTt+t y =
[Somay| |2\ sy 2\ sy
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A figura abaixo (fig. 2.9) mostra ¢ campo de orientacdo apds a filtragem, e

podemos compara-lo com o obtido anteriormente (fig. 2.86).

Figura 2.9 — Campo de Orientaciio apés Filtragem

2.2.2.3. Estimativa das Frequéncias Locais

Numa regido da impress&o onde nio ha nenhuma singularidade, os tons de
cinza das cristas e vales formam uma curva aproximadamente senoidal, na

dire¢&o normal & orientagdo das cristas, conforme ilustra a figura 2.10.
O calculo das frequéncias locais ¢ feito a partir do seguinte procedimento [3]:

1) Dividir G em blocos de tamanho WxW ( 16x16)




30

2) Para cada bloco, centrado nas coordenadas (i, j), definir uma janela

orientada de tamanho LxW (32x16) (ver fig. 10)

3) Para cada janela, calcular o vetor X (x-signature), X[0], X[1],....X[L-1], onde:

ZG(u v,  k=01.2,.,L-1

u=i+ (K— )senﬁ +(k—£]cosﬂ
2 2

v=j+ d _%/'}3056 +(k—§)sen0

Ent&o, a partir do vetor X, calcular a distancia (i, j) entre os picos, sendo que a
frequéncia serd o valor inverso desta distancia Q(i, j) =1/1(i, j). No caso de néo
ser possivel determinar picos consecutivos, atribuir o valor —1 para a

frequéncia.

4) Para os pontos para os quais a frequéncia foi atribuida —1, & preciso
interpolar um valor, baseado nos valores vizinhos. Essa interpolacéo é feita a
partir das seguintes equagdes:

w/2 w/2

2 2 W (upp(Q —uw,j-vw))
Q' _})-_* u:u;gzv;g/z
2 2W (R —uw, j—vw))

w=—w/2v=—w/2

) = Ose x<0
X'

a xse x>0
Ose x<0

I1se x>0

d(x) ={
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Onde:

W, é um kernel Gaussiano, com média e variancia 0 e 9, respectivamente.
@ = 7 € o tamanho do kernei.

5) Como as frequéncias variam suavemente numa impressdo digital, é
necessario usar um filtro passa-baixa para remover valores com variagdo

brusca,

af 2 al 2

Fli, j)= 3" > Wiuv)Q'(i—uw, j—vw)

u=—af 2v=—qaf 2
Onde Wi é o filtro e «=7 0 seu tamanho

O céleulo do vetor X n&o apresenta problemas, mas determinar um valor de
frequéncia a partir dele € muito dificil. Para localizar picos numa curva (a curva
é representada pelo vetor X), & preciso primeiramente definir o que é um pico.
No meu projeto, pico é todo ponto da curva cujos dois proximos pontos sejam
menores do que eles, e decrescentes, e os dois anteriores também, mas
crescentes. Um vale é definido analogamente. Uma vez determinados 0s picos,

o periodo do sinal é determinado pela distancia média entre picos adjacentes.

Entretanto, novamente é necessério cuidado no célculo dos periodos. Se a
disténcia entre um par de picos adjacentes for muito diferente da distancia de
outro par, o sinal provavelmente nZo sera uma boa sendide, e deve ser
descartado. No caso de s existir um par de picos, ndo hd como fazer essa
verificagéo, mas se nesse caso, a distancia entre o primeiro pico e 0 préximo

vale for muito diferente da distancia desse vale até o segundo pico, novamente
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devemos desconsiderar esse sinal. As curvas abaixo ilustram bem os

conceitos envolvidos nesse célculo.

1500 -
1000
500 | / R e

0

123 45678 91011121314151617 18192021 222324 252627 2629303132

Figura 2.1¢ — Exemplo de Curva Senoidal

Na curva acima (fig. 2.10), os picos estdo circulados em verde, e os vales, em
amarelo. A disténcia entre os picos apresenta diferenca (9-7=2) menor do que
o limite imposto no programa (limite obtido empiricamente, igual & 3). Para a
distéancia entre picos e vales, vale a mesma coisa. Portanto, podemos

considerar a curva acima aproveitavel, com periodo 8.

Na curva da fig. 2.11, a distancia entre pico e vale varia muito (13-3=10>3),
além de existir dois vales seguidos. Visualmente é facil dizer gque nao se trata
de uma curva sencidal, mas sdo necessdrios alguns parametros para que o

programa conclua isso, e é isso que torna esse calculo dificil.




2
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1500 -

1000 -

. ] | | | |

123 45678 9101112131415161718192021222324 252627 2829303132

Figura 2.11 - Exemplo de Curva NAo-Sencidal

Uma vez calculados os periodos das curvas, e obtidas as frequéncias, &
necessario interpolar valores para os pontos onde ndo foi possivel calcular um
valor. Para tal, utilizamos o kernel Gaussiano. O kernel nesse casoc € uma
regido exitrajda de uma curva de Gauss de dominio bi-dimensional. Os
parametros dessa curva sdo média O (curva centrada no ponio (0,0) e
variancia 9 (determina a “espessura’ da curva). Como os valores dessa curva
sd0 pequenos, na implementagdo do programa multipliquei-os por uma

constante, de forma que o kernel resultante ficou:
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E necessério entdo, realizar uma filtragem dos valores calculados. O filtro

utilizado tem os seguintes parametros:

1 2 3 4 3 2 1
2 5 6 7 6 5 2
3 6 8 12 8 6 3
4 7 12 1 20 | 12 7 4
3 6 8 12 8 6 3
2 5 6 7 6 5 2
1 2 3 4 3 2 1

As proximas imagens (fig. 2.12) representam as frequéncias calculadas antes

da interpolagéo, apds interpolagdo mas sem filtragem e apés filtragem. Pontos

brancos tém valor de frequéncia —1. Quanto mais claro for o ponto, maior sua

frequéncia.
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Figura 2.12 — Frequéncias (a) Antes da Interpolacio (b) Apés Interpolagdo (¢) Apés Filtragem

2.2.2.4. Filtragem

O préximo passo no processo de Enhancement é a aplicacdo dos filtros de
Gabor {1,2,3]. Esse tipo de filtro depende da orientacdo e frequéncias locais,

motivo pelo qual elas foram calculadas.

A idéia basica por trés desses filtros é a seguinte: Sabendo-se a orientagdo
local em uma regido, divide-se a mesma em faixas paralelas, no sentido da
orientacdo. Soma-se as intensidades nessas faixas, de forma ponderada. A
equagdo que pondera essa faixa é;

EQ’
26’

exp(

EQ ¢& a posigéo de um ponto da faixa, na diregdio de orientagéo;

o € uma constante Gaussiana. (c=4, valor escolhido arbitrariamente).
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Entéo, devemos somar os valores obtidos para cada faixa, também de forma
ponderada. Nesse caso, o ponderagéo é feita por:
cos(2nfEF)
EF é a posicéo da faixa na direcéo da frequéncia, isto @, na diregéo

normal & orientacéo.

A figura abaixo (fig. 2.13) ilustra essas variaveis e as equacoOes de ponderacao.

N ™
1 //—\\ ]
1/ N\
S 0 / .
- : 7
I " o4 4 2 4 0 1 2 33 4
& | \\
i f'.‘ - e N

Figura 2.13 — Eixos EO ¢ EF ¢ Curvas de Ponderagiio

O resultado final dessas operacdes é o que chamamos de filtros de Gabor.

|
v %

B AN SRR

45° orientation {® orientation

Figura 2.14 - Filtros de Gabor
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O grande problema desse filtro é gue ele ndo retorna um valor dentro da faixa
de interesse (0 a 255). Isso se deve ao fato de que nesse filtro alguns
coeficientes assumem valores negativos, o que inviabilizaria dividir a somatéria
ponderada pela somatéria de pesos. Porém, algumas associa¢es podem ser
feitas, e a partir delas bolar um método para adequar os valores obtidos a faixa
de interesse. Quando o centro do filtro corresponde ao centro de uma crista, as
faixas centrais tém somatéria baixa e as laterais, alta. Mas como o peso das
faixas laterais & negativo, o valor da somatoria é um valor negativo. Para o
caso contrario, com o centro do filtro coincidindo com o centro de um vale, a
somatdria assume um valor positivo. As outras posigdes assumem valores
intermediarios. Entdo, relacionando o valor méximo encontrado com o valor
235, e ¢ minimo com 0, obtemos uma transformacéo linear entre os valores da
somatoria e os da faixa de interesse.

Surgem, entretanto, dois problemas. Se o filtro for aplicado em uma regido da
imagem onde n&c h& impresséo, ou seja, uma regido branca, o valor
encontrado para a somatéria sera aleatdrio, fora do esperado. Pode ser que o
valor seja muito maior que o maximo encontrado na impressdo, o que
acarretaria num sério problema: esse novo maximo seria associado ao valor
255, e os pixels brancos da impress&o, com valor de somatoria bem menor,
tenderiam a valores baixos, e seriam confundidos com pixels pretos. Para
solucionar esse problema, basta garantir a aplicacdo do filtro somente numa
regi&o retanguiar contida na impressao digital.

G outro problema € um pouco mais grave, € necessitou uma maior elaboragéo
para ser resolvido. O filtro deve ter tamanho constante, ou seja, ter sempre o

mesmo numero de faixas (11) e mesmo nlmero de pixels por faixa (11). Mas
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quando esse filtro & aplicado em regides de frequéncias diferentes, o valor da
somatoria obtido, para uma mesma condicdo (por exemplo, aplicagéo nc centro
da crista), € muito diferente. Contudo, esse valor deveria ser igual ou muito
préximo, pois se trata de uma mesma condicdo. Nesse caso, centros de cristas
podem se tornar pixels pretos (como deveriam ser), cinzas ou até brancos. O

esquema abaixo (fig. 2.15) ilustra a causa desse problema.

/ k
4 Tamanho 4o Filo

Tamauho do Filhe \

o o
R Frequénia Bara

Figura 2.15 - Esquema do Problema devido i diferenca de Frequéncias

Seria necessario que o filtro abrangesse sempre uma mesma faixa,
independente da frequéncia. A faixa escolhida é de um periodo. Contudo, como
n‘éo podemos aiterar o nimero de faixas conforme muda a frequéncia, é
preciso espaca-las para adequa-las a cada caso.

Uma vez corrigidos esses dois problemas, o resultado (imagem melhorada) se

mostrou muito bom, como ilustra a figura 2.16.



39

Figura 2.16 - Imagens Originais ¢ Melhoradas
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2.3. Thinning

A partir da imagem melhorada, o processo de afinamento (thinning) pode ser

realizado sem que ocorram muitos problemas.

O processo de afinamento é baseado nas hipbteses de que as intensidades
das cristas e vales formam uma onda senocidal na direg&o normal a orientagéo
e de que os pixels centrais de uma crista s80 os de menor intensidade, ou seja,
s80 os mais negros [1]. A idéia do método &, entéo, encontrar esses pixels
centrais e apagar todo o resto da imagem. Dessa forma, poderiamos
representar a impressao digital por cristas de espessura 1 pixel, o que tornaria
muito simples a extrac&o das caracteristicas.

Embora simples, 0 método ndo & perfeito, tampouco o & a impresséo
melhorada. Portanto, algumas correcées devem ser feitas para melhorar a

imagem afinada.

Nas regibes onde a orientagsio é préxima de 45° ou 135’ . as cristas
apresentam espessura dupla, como iiustra a figura 2.17. E necessario, entédo,

um simples algoritmo para remover os pixels indesejaveis.

Figura 2.17 - Problema no Afinamento
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O outro problema consiste no aparecimento de muitos pixels brancos
“‘cortando” as cristas afinadas. Esses espagos ndo significam que ali & um final
de crista, e sim um pequenc defeito, mas muito comum. Para evitar o
surgimento de muitas minGcias aleatdrias, criei um algoritmo que detecta esses
pequenos defeitos e os corrige, ou seja, une novamente os dois pedagos de

crista e apaga pixels indesejaveis que venham a aparecer.

LN

Figura 2.18 — Problemas No Afinamento
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2.4, Extracao de Caracteristicas

Por fim, chegamos na extragdo de caracteristicas em si. O processo

novamente & simples, mas devemos ficar atentos com os possiveis (e s&o

muitos) problemas.

Para detectar as caracteristicas basta varrer a imagem afinada, e para cada

pixel de crista, averiguar o nlimero de pixels vizinhos. Um final de crista s6 tem

um vizinho, uma bifurcacéo tem trés e um pixel normal tem dois.

Embora a primeira extracéo seja banal, ela contém muitos provaveis erros, que

listo, juntamente com a solug&o proposta, em seguida:

1) Bifurcagbes muito préximas: Muitas vezes, o que seria uma dUnica
bifurcagéo é representada por mais de uma, como ilustra a figura 2.19. A

soluc&o & reduzir a apenas uma um conjunto de bifurcacbes adjacentes.

Figura 2.19 - Bifurcacdes Préximas

2) Bifurcagdo muito préxima de um final de crista: Defeitos no processo podem
gerar “falsas bifurcagbes’. Essas sdo facilmente detectadas pois um de
Seus ramos tem tamanho muito pequeno (uma vez que hé um final de crista

proximo). A solugéio é desconsiderar ambas as minticias (ver figura 2.20).
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L
"y

Figura 2.20 - Bifurcagiio ¢ Final

3) Dois finais de crista muito proximos, isolados de outras mintcias: Embora o

4)

5)

processo de afinamento elimine lacunas de tamanho 1 pixel em uma crista,
quando © espago em branco &€ um pouco maior (2 ou mais pixels), o
processo de exirag&o assume que encontrou duas mindcias, o que é

errado. A solugdo é novamenie desconsiderar ambas.

O I
L ¢

Figura 2.21 - Dois Finais
Trés finais de crista muito préximos, isofados de outras minticias: Algumas
vezes uma bifurcacdo fica apagada, mas os seus trés ramos tem finais
préximos. Para corrigir esse problema, basta substituir as trés mintcias por

uma so, posicionada no centro geométrico delas.

. |
H
s e
Figura 2.22 — Trés Finais
Vérias cristas numa mesma regido: E muito dificil dizer o que causa esse
tipo de erro, e € mais dificil ainda de corrigi-lo. Adotei solugdo anéloga ao
caso anterior, substituindo todas por uma s6. E claro que podemos estar
perdendo mintcias genuinas, mas € mais provavel que estejamos

eliminando algumas falsas.
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2.5. Comparagdo com o Banco de Dados

Visualmente, a extragcdo de caracteristicas apresenta um bom resultado.
Comparando duas impressdes distintas de uma mesma pessoa, verificamos
gue a grande maioria das minucias coincidem, como observamos nas figuras

223224

Figura 2.23 — Comparagio entre as Mimicias de Duas Impressdes Digitais

A grande dificuldade, entretanto, & desenvolver um algoritmo que perceba essa

semelhanca. Como a posi¢&o da impressao digital dentro da imagem varia de
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coleta para coleta, uma comparagdo direta das posicdes seria inviavel.
Portanto, temos somente outras duas maneiras possiveis para efetuar a
comparacgao: utilizar um ponto comum de referéncia ou se basear na posigao

relativa das mindcias entre si.

7= T .

Figura 2,24 — Comparagiio cntre as Minicias de Duas Impressées Digitais

A primeira opgéo seria computacionaimente mais simples. Os dados de
posicdo e orientacdo das minucias, em relagdo a um ponto de referéncia
seriam armazenados no banco de dados e a comparacéo seria direta {(minucia
a mingcia). Porém, esse método depende muito de encontrar um ponto de
referéncia confidvel. A idéia inicial era utilizar os pontos singulares da
impressdo (por exemplo, o ponto core). Mas a localizagdo desse ponto esta
sujeita a erros de razoavel grandeza. Somado aos erros de localizagéo das

minucias, terfamos uma imprecisdo muito grande, e para vencer essa
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imprecisao, deveriamos adotar uma tolerancia também bastante grande. Com
i8so, seria muito comum confundir pessoas, e o programa perderia muito em
robustez.

A solucdo, entdo, estaria em desenvolver um método para relacionar as
minacias entre si. Uma opgdo seria escolher uma minucia aleatoriamente, e
liga-la a mindcia mais préxima, € assim sucessivamente até fechar o ciclo.
Comparar-se-ia o tamanho do caminho obtido e outras propriedades, como
angulos dos trechos, etc... Nesse caso, uma mindcia falsa em uma impressao
poderia desviar completamente o caminho original, c gue certamente inviabiliza
esse procedimento. Qutra opcéo seria escolher uma mindcia para ser o ponto
de referéncia. E i6gico que seria muito dificil escolher a mesma mindcia nas
duas imagens que estdo sendo comparadas. Poderiamos ent&o utilizar mais de
um ponto de referéncia, e se em alguma combinagdo de referéncias o
“encaixe” das minucias fosse adequado, a comparagdo seria positiva. Os
problemas nesse caso S80 que O processc seria computacionalmente
exaustivo, e que, embora visuaimente as mindcias paregam equivalentes, as
distancias entre elas variam razoavelmente (devido & deformacdo linear na
coleta da digital), e voltariamos na questéo das grandes tolerancias.

Embora ndo tenha desenvolvido um algoritmo que resolva essa questéo,
acredito que a resposta esteja em encontrar padrfes nas minucias. Por
exemplo, olhandc a figura 2.23, poderiamos detectar um quadrilatero de

minucias na regido superior central, e assim por diante.
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3. Método de Redes Neurais

3.1.Introducao

Para realizar o reconhecimento das impressées digitais vai-se utilizar redes
neurais. As redes neurais sd0 uma espécie de esquema que tenta imitar o
funcionamento do cérebro humano. O cérebro humano é um computador com
uma complexidade imensa, ndo possui linearidade e possui processamento

paralelo [4].

Desde o nascimento o cérebro possui a capacidade de educar os neurénios,
criando o que se pode chamar de “experiéncia’. Desse mesmo modo
funcionam as redes neurais elas sio programadas para adquirir essa
‘experiéncia”’ durante um processo de treinamento de tal forma que para uma

determinada entrada se tenha uma determinada saida desejada.

Essa “experiéncia” fica guardada nas sinapses, no caso do cérebro, e nos
pesos existentes entre as unidades de processamentos, no caso da rede

-~ -

neural (neurdnios).

O processo para treinamento dos pesos sinapticos € chamado de algoritmo de
treinamento, e ele deve gerar uma matriz de pesos de tal forma que a rede

sempre fornega uma saida satisfatéria dado uma certa entrada.

Utilizar as redes neurais nos da algumas vantagens, entre elas [4]:
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© Capacidade de analise de sistemas néo lineares;

© Mapeamento das entradas e saidas num processo de aprendizagem;
© Adaptabilidade a variactes no sistema:

© Robustez do sistema(resisténcia a erros);

© Processamento paralelo simultaneo;

As redes neurais podem ser configuradas de vérias formas, mas todas
possuem algumas caracteristicas em comum, essas caracteristicas ser&o

resumidas a seguir.

A redes neurais sdo compostas por neurbnios e pesos, fazendo um paralelismo

com o funcionamento dos neurdnios bioldgicos.

Esses neurdnios recebem um conjunto de entradas multiplicadas pelos
respectivos pesos, essas entradas jad ponderados sdo somadas para gerar a
saida “primaria” do neurdnio, essa saida serviré de entrada para a fungdo de

ativacdo da rede. O esquema a seguir demonstra esse funcionamento:

(51 o
u=XxXw
0]
2 ——p
/Cl)-;/v
X3
\-
U = X)W Hewa . X, Wh

Figura 3.1 : Neurdnio Artificial
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Os demais detalhes sobre a rede neural em si e seu processo de treinamento

ser&o dados nas se¢bes posteriores.

Antes de falarmos da rede neural em si vamos falar um pouco dos pré
processamentos necessarios para que a rede possa trabathar com a imagem
da impresséo digital e faga sobre ela qualquer tipo de analise, esses pré

processamentos s&o descritos a seguir.
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3.2. Processo de Classificagao com Redes Neurais

A idéia é fazer com que a rede neural primeiro classifica as impressées digitais
, elas serdo divididas em cinco classes Arch, Tended Arch, Left Arch, Right
Loop and Whorl, apdés essa classificagdo os valores gerados pela rede de
veréao ser usados para fazer o reconhecimento em si. A figura 1 abaixo mostra

as cinco possiveis classes [3].

Figura 3.2: Classes de Impressbtes

Diferentemente do outro método mostrado nesse trabalho, aqui ndo vamos
comparar as mintcias das impressdes, ou seja, comparar fins e bifurcacdes de
cristas, O processc aqui serd diferente. O processo de classificacéo das
impressbes estd representado na figura 2, onde os componentes ovais
representam a entrada e a saida, os retangulos representam os componentes
de processamento e as flechas o fluxo de informagéo. Os componentes ndo

representam necessariamente a programas separados, eles s3o meramente
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uma separagédo em blocos conceituais. A imagem da impress&o digital & uma

matriz de 512 x 512 e 8-bits de graus de cinza [5].

Maximnm hypothesized

Finder class

fingerpring Feature Discriminant

image Extractor Funciions

accept or

Rejector )
rejeet

Figura 3.3: Seqiéncia Conceituai de Passos

O componente de “Extracdo de Caracteristicas” reduz a digital de 262.144
bytes em um vetor de caracteristicas, uma pequena lista de numeros que
ocupa apenas 448 bytes. Este vetor de caracteristicas tem como pretensao
representar, de uma forma compacta, as caracteristicas relevantes para a

classificagéo das impressoes. .

O proximo componente € o “Banco de Fungdes Discriminantes”, existe cinco
fungdes discriminantes, uma para cada classe. Cada uma produz um ntmero
real, o qual tende a ser grande se a impresséo digital for a correspondente

daquela funcgao.

Os cincos valores produzidos pelas fungdes discriminantes sdo mandados para

os dois componentes finais, o “Encontrar o Maximo” e o “Rejeitor’. O Encontrar
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o Maximo meramente acha o maior dos valores que foi gerado pelas fungdes e
diz a partir desse valor qual seria a classe da impressé&o digital. O componente
Rejeitor serve com avaliador se essa classificagéo é valida ou ndo, ele possui
um erro permitido, se o erro entre o valor maximo gerado e o valor méximo de
referéncia for maior que esse error base a classificacdo é rejeitada. Essa
rejeicdo significa que o sistema de classificacdo se recusa a dsterminar uma
classe, porque ele n&o pode ter a certeza suficiente para fazer o mesmo. Agora
vamos descrever um pouco sobre cada um dos componentes desses

processos,
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3.3. Extrator de Caracteristicas

Esse componente recebe como entrada um pequeno vetor numérico de
caracteristicas, esse vetor € gerado a partir da impresséo digital da seguinte

forma.

3.3.1. Campo de Orientagdo

Agora vamos calcular o campo de orientagdo da impressao digital, este campo
de orientag@o é calculado baseado em um método chamado de “cristas-vales”,
esse método baseia-se em um binarizador que trabalha da seguinte forma.
Para cada pixel C, a soma dos slits s;, i=1...8, s&o calculados, onde cada s; é a
soma dos valores de todos os pixels nhomeados i/ na figura 4. O binarizador
converte os niveis de cinza em preto e branco através da combinagéo dos

métodos de “Threshoulding Local” e “Comparagéo de Slit” [5].

T8 1 2 3
6 78123 4
6 4
> & C 5 5
4 6
4 32187 6

3 2 1 8 7T

Figura 3.4 : Numerac¢ao dos Pontos vizinhos
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A formula do “Threshoulding Local” coloca o pixel para branco quando a
entrada C excede a média das intensidades dos pontos pertencentes aos slits,

logo a formula fica:

I 8

24

A formula de ‘Comparagao dos Slits ‘ coloca o pixel para branco se a média do

minimo e maximo slits excede a soma de todos os slits, logo a formula fica:
1 13
—{5 . + 8§ > — S,

Combinando as duas equagdes chega-se a equacdo que se segue:

8
AC+s_ +S,. >§Zs,.

i=l

»

Para encontrar a direcdo das cristas € vales & apenas uma extensdo do
binarizador. Apds binarizar, a diregdo da crista em ponto individual é
considerado como a dire¢do que 0s slits escolhem de uma maneira natural, ou

seja, da menor soma de slits para o caso daqueles pontos binarizados para
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preto e da maxima soma para os pontos binarizados para branco. Para gerar
um melhor efeito no calculo, calcula-se as dire¢des em janelas de 16x18, ou

seja, na verdade uma média das dire¢des naquela regiéo.

O angulo da crista 8 em uma localizagéo é definido como sendo 0° se a crista
for horizontal, aumentando até 180° a medida que se gira no sentido horario e
revertendo para zero quando a crista se torna horizontal novamente (0° < 6 <
180°%). Quando a direc&o de uma crista em pixel é calculada, na verdade ndo se
tem o angulo 8 mas sim um vetor de diregdes (cos20,sen20). Calcular a média
dos angulos pode produzir resultados absurdos: a média entre 1° e 179°, cada
um préximo da horizontal, produz um angulo de 90", que ndo é um resultado
nada aceitavel. Quando se faz a media de senos e cosenos também nao se
obtém bons resultados, logo por isso utilizamos para calcular as médias 0s

Senos e cosenos de 20.

Calculando-se as dire¢bes em janelas de 16x16, gera-se 840 direcbes que é na
verdade a saida desse programa, ou seja, o campo de orientacdo em si. A
figura 5 mostra os maiores 112 autovalores, sua rapida queda nesse grafico
mostra que a informagao gerada por essa transformada s&o concentradas nas

primeiras caracteristicas.
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3.4. Classificador

Agora daremos uma breve infrodugdo do classificador em si. O classificador a
ser utilizado sera uma rede neural Feedforward do tipo MLP(Multi-Layer
Pecption) com trés camadas (contando a entrada como uma camada). Se faz

conveniente aqui definir a seguinte notacgéo [5]:

N? = nimero de noés na camada (i =0,1,2)
f(x} = 1/(1+e™) = fungéo sigmoid
b = peso bias do n6 /" da camada &

wi* = peso da conexio do né M da camada & ao n6 /' da camada (k-

)" (k=1,2;1<i<N®D)

X = (Xq,....,Xn)' = vetor de caracteristicas

Vale observar que

N© = niimero de nds de entrada = n = nimero de caracteristicas

N = ntimeros de nés ocultos:

N®@ = niimeros de nés de saida = N = nimero de classes.

Dai sai que a fungéo discriminante que representa essa rede fica:
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N

N0}
D(x)=fB + 2wl f(BP + T wix,
j=1 k=1

Para treinar os pesos da rede o procedimento a ser usada n&o foi determinado
ainda,

visto que ele & de suma importancia para a boa resposta da rede e deve ser

otimizado para que nio leve muito tempo de processamento.
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3.5. Funcoes de Ativacao

Depois que foi dado na se¢éo anterior uma breve introdugao sobre que tipo de
rede sera utilizada vamos entrar em mais detalhes sobre a rede neural em sie

seus componentes [7].

Chama-se fungé@o de Ativagado a fungao que pega a saida u gerada pelo
neurdnio e normaliza ela, a saida dessa funcéo (y) sera considerada a saida do

neurdnio.

Essa fungao pode ser por exemplo uma fungao linear do tipo:
y=p)=k-u

onde k &€ uma constante ou uma fungao threshold do tipo,

1 seu>x
= H)=
y = ou) {0 -

onde x € um threshold .

Porém esses tipos de fungdes ndo possuem respostas satisfatorias, quando se
trata de utiliza-las em redes neurais, o problema com essas fungbes € que néo
possuem um limite, ou seja elas variam de acordo com a variagao de u, o que
ndo é bom pois pode ir se acumulando com as intera¢des até que sature a

rede.
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Logo o ideal é utilizar uma fungdo que limite o valor da saida y. A fungdo que

normalmente é utilizada é fungdo sigmoidal:

L (1)

1+¢

y=p)=

o grafico dessa fungéo é o seguinte:

Fungas Ativada
L= = & [~ =]
&n o -y o w

==
£

02

24

o
-10

Figura 3.5: Gréafico da fungdo de ativagéo do tipo sigmaoidal

Como o gréfico pode mostra a saida dessa fungdo varia de O & 1, para
qualquer faixa de variagéo da entrada, logo ela pode ser utilizada em uma rede

porgue n&o vai acumular os valores de itera¢do a medida que o processamento
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avanga. Outro ponto importante que essa fungbo tem, e faz com que ela seja
ideal para utilizagdo nesses casos, € que para valores proximos de zero da

entrada tem-se valores de saida diferentes de zero.

L ogo o esquema do neurdnio fica agora:

é X1 (V)]
2 u y = ¢(u)
Xa— 2 p (p EELAEY,
il
3

U = X1WiHXawat.. FX, Wy

Figura 3.6: Neurénio Artificial com a Funcfio de Ativagio
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3.6. Nimero de Camadas

3.6.1 Redes de Camada Unica

Esse tipo de rede é mais simples, € composta apenas de nos de entrada , que
distribuem as mesmas, e de neurdnios de saida. Vale aqui comentar que 0s

nos de entrada ndo sdo neurdnios em si. Assim como mostra o esquema a

seguir [7].

Figura 3.7: Rede de Camada Simples

Para esse caso 0s neurdnios recebem os valores das entradas multiplicadas
pelos respectivos pesos e as soma, 0 valor dessa soma € entdo jogada na
funcéo de ativag&o para gerar a saida da rede. Os pesos formam uma matriz m

x n, onde m é o nimero de entradas e n € numero de neurdnios.

3.6.2 Redes Neurais de Camadas Multiplas
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Nesse tipo de rede existem pelo menos duas camadas de neurbnios, por isso
s30 mais complexas e geralmente possuem maiores capacidades
computacionais. Para caso desse trabalho serd usada uma rede desse tipo,

com duas camadas de neurdnios, sendo uma delas escondida..

Um esquema da rede que vai ser utilizada € mostrada no esquema a segur,
como mostra a figura ela terd 1024 entradas e apenas cinco neurdnios de
saida, sendo que a camada interna tera os seguintes nimeros possiveis 15,20

e 25.

Figura 3.8: Rede de Camada Multiplas

Ja que a saida de uma camada é a entrada de outra , como pode ser visto no
esquema, a funcdo de ativagdo estd presente entre duas camadas ¢ essa é
toda diferenca entre esse tipo de rede e o0 de camada simples como pode ser

provado faciimente.
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Caso n&o houvesse a funcdo de ativaglo a saida da rede seria calculada
multiplicando as entradas por duas matrizes de pesos seqlencialmente, ou

seja a saida seria:

y = {Uwq)wo;

Como a multiplicacdo de matrizes é associativa € equacdo acima pode ser

escrita da seguinte forma:

Y = U{Wywo);

Logo seria como se as entradas tivessem passadas por uma rede de camada
simples, por tanto a fungédo de Ativagdo & que faz a diferenga entre os dois

tipos.
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3.7. Treinamento de Redes Neurais

Agora vai-se falar na caracteristica mais importante das redes neurais
artificiais, a capacidade de aprendizagem. Esse processo € realizado através

do treinamento dos pesos, com ja mencionado anteriormente.
O treinamento consiste de uma sequéncia de passos [6]:

1. Fornece-se o vetor de entradas para a rede e faz-se com que ela

calcula a saida;

2. Essa saida & comparada com a saida desejada e gera-se um erro
que sera propagado para tras, recalculando-se os pesos de forma que a saida

passe a ser a desejada.;

3. Repete-se esse processo até que os pesos estejam de acordo,

para o calculo como desejado.

3.7.1 Treinamento Backpropagation

O treinamento de redes neurais multicamadas foi durante muito tempo um
problema, porque ndo havia um processo sistematico para o treinamento, mas
como as redes de camadas simples comegaram a se mostrar limitadas, teve-se
que se desenvolver um algoritmo que realizasse essa tarefa, dai surgiu o

Backpropagation [6].
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Vai-se falar do método desenvolvido por Rumelhart, Hilton e Willians (1986).
Esse método tenta minimizar ¢ erro entre o vetor de saida gerado pela rede o

vetor de saida desejado.

A rede é inicializada com pesos randdmicos de valores pequenos, como a
nossa rede vai usar a fungéo de ativagao sigmoidal, a equacgéo para calculo da
saida final de cada neurbnio, com exce¢io da camada de entrada que apenas
passa o vetor de entrada, multiplicado pelos respectivos erros, para a primeira

camada, fica sendo:

1
Yj(a),h,u)— 1+exp{_(zi\il (C{Jﬁy,')_'_hj)} (2)

onde @, entre o neurbnio j, para qual esta sendo calculada a saida, e 0

neurdnio i da camada anterior, N & o namero total de neurbnios da camada

anterior, y, & a saida ativada do neurdnio i da camada anterior, i, & 0o

chamado bias da unidade j, ele pode ser entendido como um outro peso e para

O NOSSO Caso sera considerado como zero.

3.7.2 Ajuste dos Pesos da Camada de Saida

Primeiramente deve-se calcular o erro enire a saida desejada e a saida gerada

pela rede, que fica:
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e, =d, —y, (3)

P

u = xiwtxewet.. +Xa Wy

Figura 3.9: Esquema para o Ajuste de Pesos da Camada de Saida

Agora deve-se definir o erro quadratico global, que nada mais € do que a soma

dos erros quadraticos de cada neurdnio da camada de saida, ou seja:

§=-Fe/ (4)
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A atividade interna do neurdnio antes ser ativado é :

uj:zmg"yi (5)

De acordo com a fun¢éo de ativagio sabe-se que:

V; =@u;)
O que o algoritmo vai fazer é calcular uma corregéo Aw, para cada o, de tal

forma gue o novo peso, depois de corrigido, sera:

w;(n+Y=a,(n)+ Ao,
onde n & o indice da alteragéo que esta sendo feita.

Porém sabe-se que a correcdc Aw, é proporcional ao gradiente (regra deita),

togo tem-se:

o&
Aw, =7n- ; 6
5 =1 515 ©

g

A constante 77 determina a taxa de aprendizagem e chamada de coeficiente de

aprendizagem.
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Logo tem-se que calcular o valor do gradiente, esse gradiente pode ser

expresso através da seguinte expressio:

of _o& 95 95 o 7)
Ow, Oe; 0Oy, ou, Ow,

J

Agora vai-se calcular cada um dos componentes desse gradiente. O primeiro

deles pode ser deduzido a partir da equagéo (4) e fica:

% _, (8)

0O segundo componente pode ser deduzido a partir da equacéo (3) e (4):

Tieoy ()

Derivando-se a equacgéo da Funcgao da Ativacéo chega-se na equacgao para ¢

terceiro componente:

?yj =@;(a;); (10)

(3

s
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Derivando-se a equacio (5) chega-se na equagéo do quarto componente:

L=y, (1)

Agora substituindo na equacao (7) a equagao dos componentes encontradas,

tem-se:

o0&
Sw

=—e;-p;(u;)y,  (12)

i

substituindo agora na equacéo (6) do gradiente, pode encontrar uma equacéo

para a corre¢do:

Awy‘:_ej'@}(uj)‘yi (13)

A funcéo de ativagdo que vai-se usar na rede a sigmoidal, logo:

o (u)=y,1-y,); (14)

Definindo &, como um gradiente local igual a:
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5j=ej'yj(1_yj); (15)

Logo substituindo essa equagéo na equagédo (13) fica:

Aw, =-nd,y, (16)

3.7.3 Treinamento dos Pesos da Camada Escondida

O problema de treinamento dos pesos dessa camada é que ela n&o possui
informac¢des sobre os erros da saida, logo ndo se pode fazer o mesmo
processo do caso anterior. Logo o método de Backpropagation vai propagar o
erro da camada de saida para essa camada de tal forma a calcular os novos

pesos. Agora vai-se trabalhar em cima do seguinte esquema [6]:

Camada de Saida k

Camada Escondida i

Figura 3.10: Esquema para o Ajuste de Pesos da Camada Escondida
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{ gradiente local para um neurdnio escondido | € dado por :

5,=- 2.2 (17)
oyj ouj
Que também pode ser escrita da seguinte forma:
os
8= 9w (18)

Substituindo o indice novo, de acordo com o esquema da figura 6, na equagéo

4o erro quadratico (4), tem-se:

Iy
Il

e, (20)

B2 |

Derivando-se essa equagado tem-se:
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Observando a figura 6, poede-se notar que:

e, =d, -y, =d, —9,(u,), (22)
Dai deduz-se que:
De
a—" =-p;,) (23)
i,

Mudando os indices da equacéo de atividade interna (5) para k, fica:

U, = Zwﬂc <Y (24)
i
Derivando-se novamente essa equacdo, tem-se:
L -w. (25)

Substituinde-se as equagbes (25),(24) e (23) na equacgdo (21) e depois

substituindo essa equagao na equacao (18) chega-se a:
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J, =¢>3.(u_,.)25k @ (26)
k

Logo pode-se resumir o processc de treinamento como sendo baseado em

dois pontos basicos:
1. Acorrecéio Aw, aplicada ao peso que conecta 6 neurdnio i com o neurdnio
J, sendo definido pela Regra Delta;

2. Corregéo do erro = Coeficiente de Aprendizagem x Gradiente Local Sinal de

Entrada
O gradiente Local § ; vai depender da camada em que estamos recalculando
0S pesos
> Se o0 neurbnio de analise (j) for da camada de saida, & , € igual ao produto
da derivada da fungéic de Ativacdo e o erro do neurdnio j

> Se 0 neurdnio j pertencer a camada escondida ent3o o gradiente sera igual
ao produto entre a derivada da fungdo de Ativacdo e a somatéria dos

produtos entre os pesos e os gradientes da camada posterior.

3.7.4 Melhora da velocidade

O método descrito acima pode ser um pouco lento, para methorar essa
performance Rumrlhart, Hilton e Willians desenvolveram, além do método

descrito, o que eles chamaram de Coeficiente de Momento, ele consiste em
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adicionar um termo no calculo da corregdo dos pesos, sendo essa nova parcela

proporcional a correcée anterior, logo a equacao fica;

Aw,(n+1)=-nd,y, +adw,(n)

Para o caso desse trabalho vai-se utilizar « igual a 1, visto que de acordo com

os testes feitos esse valor foi o mais indicado € o gue obteve o melhores

resultados.
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3.8. Descri¢cdo do Programa

Agora vamos fazer a descrigdo do funcionamento do algoritmo do programa,
quais sdo suas interligacbes e a para que servem os objetos utilizados, no

final.

Basicamente o programa tem cinco agdes Open, Binarizar, Classificar, Treinar

a Rede e Cadastrar.

3.8.1 Open

Este comando serve apenas para abrir a impresséo digital a ser analisada ¢

classificada.

3.8.2 Binarizar

Este comando torna a imagem da impresséo digital, capturada em tons de
cinza pelo scaner, uma imagem binarizada, ou seja transforma os tons de cinza

em preto e branco facilitando assim a analise.

O método utilizado foi descrito anteriormente nas segbes XXX .
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3.8.3 Classificar

Este comando serve para classificar a impresséo digital em si. O processo que

ele realiza esta descrito abaixo.

Carrega a Impresséo de
Entrada

Binariza

Pede a localizagdo dos
pesos corretos para a
classificagcé&o

Classifica

Figura 3.11: Diagrarma de blocos do comando
Classificar



3.8.4 Treinar Rede
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Este comando serve para treinar os pesos da rede neural, 0 processo esta

descrito no esquema abaixo, o algoritmo de treinamento usado é o de

Backpropagation, explicado anteriormente.

)

Carrega Impressao
Digital

v

Carrega Saida
Desejavel

v

Carrega os Pesos
Existentes

v

Gera Saida com esses
Pesos

I

Calcula o Erro
Quadratico

:

Recalcula 0os Pesos da
Primeira Camada

:

Recalcula os Pesos da
Camada de Saida

v

Figura 3.12: Diagrama de Blocos do comando Treinar Rede
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3.8.5. Cadastrar

Esse comando apenas jogo em um arquivo de saidas desejadas
predeterminado pelo programa os valores de saida colocados nos campos a

direita chamados de "Saidas Desejadas”, da seguinte forma:
1. 10000 se a nova impressao for do Whrol;

2. 01000 se for Arch

3. 00100 se for Tended Arch

4. 00010 se Loop para esquerda e;

5. 00001 se Loop para a direita.
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3.9 Arquitetura do Programa

Agora sera descrito a hierarquia entre as diversas fungbes e objetos existentes

No programai.

o I OpenClick I

Programa Principal
Menu

BinarizarClick
Open
Binarizar = :
TreinarRedeClick
Treinar a Rede

Classificar

ClassificarClick
Cadastrar
R CadastrarClick I

Figura 3.13 - Arquitetura do Programa Principal




BmpTolnt I
BinarizarClick i CalCampo I

S | IntToBmp I

Figura 3.14 - Programa Principal: Rotina BinarizarClick
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‘ Inipesos I
Abre_arq I
Carrega_saida '

BmpTolnt I
CalCampo I

. Zeramatriz
’ TreinarRedeClick I
' Saida1 '

‘ Saidafim '

Mostra_valor I
Recalque_seg !
Recalque_prim I
Salva_pesos I

Figura 3.15 - Programa Principal: Rotina TreinaRedeClick

31



‘ Zeramatriz I
\ Saida1 I
‘ saidafim I
’ Mostra_valor I

Figura 3.16 - Programa Principal : Rotina ClassificarClick

‘ ClassificarClick I
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3.10. Testes e Resultados

Nesta secdo vamos falar a respeito dos resultados obtidos com o programa,
antes de comegar vale fazer a seguinte observagdo, ndo se conseguiu chegar

ao reconhecimento em si da impress&o digital de forma satisfatéria.

Isso ocorreu porque como a rede neural possui como entrada os angulos
(campo de orientagéo) dos pontos das cristas das impressdes digitais ocorre o
seguinte problema, a digital quando é cadastrada sua imagem é captada em
uma certa posicéo, porém se da préxima vez que ela for captada néo estiver na
mesma posigdo da primeira o valor do angulo em cada ponto relativamente a
anterior ira mudar completamente, embora seu campo de orientacdo na se
altere muito porque o campo de orientagdo representa um sentido de rotacio,
que ndo importa a posicdo que seja colocado o dedo na hora da captacao,

S$€era o mesmo.

Portanto, para se fazer o reconhecimento fica muito dificil por que os valores
gerados pela rede serdo muito diferentes em cada caso, embora o meior
continue sendo o mesmo. Depois de isso posto vamos aos resultados em si do

programa.
3.10.1. Treinamento da Rede

O treinamento da rede é o processo mais demorado que o programa possui,
em média ele demora 3 segundos por par de impressé&o digital se realizado em
um computador com processador Pentium | 400Mhz de frequéncia de clock. A

figura 3.17 abaixo mostra a tela do programa durante o treinamento.
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Prncipal

File Actions

Status do Hocm D - Par
Fd\rando Pesos IS

Tempo Final da Processamento
Classificacs
{Arch

Figura 3.17: Processo de Treinamento

Como mostra a figura nesse momento o treinamento esta sendo finalizado,
pois no quadrado “Status do Processamento” esta escrito Salvando Pesos, ou
seja os pesos j& foram recalculados estdo sendo armazenados. O quadrado
onde tem escrito “Par’ corresponde ao par de treinamento que esta sendo
usado no momento para treinamento, no que tem escrito “Classificagdo”
corresponde a classificagdo do mesmo dentro daquelas cinco classes ja
mencionadas.

P

Quando a opgéo “Treinar Rede” é escolhida no menu “Actions” a primeira tela

que aparecera sera a mostrada na figura 3.18
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f i Entiadas Necessarias

Paquivo de Saidas Desejadas

Arquivo de Pesos da Primera Camada

i
8

Arquivo de Pesos da Camada de Saida

Digite 0 caminho onde est3o as entradas

Nimero de Pares

f——
DKI

Figura 3.18: Entradas para treinamento da rede

Nessa tela deve ser digitado as entradas que serdo utilizadas pelo programa
para a realizagdo do treinamento. A primeira delas € o arquivo de saidas
desejadas, onde deve estar armazenadas todas as saidas desejadas que
serfo usadas durante para o treinamento, depois deve ser digitado o arquivo
de pesos da primeira @ segunda camada, se esses arquivos ainda nio
existirem deve ser digitado o caminho e arquive onde se deseja criar esses
arquivos, depois deve se digitar 0 caminho para o diretdric onde estéo
armazenadas as impressdes digitais que serdo usadas, nesse diretorios os

arquivos com as impressdes digitais devem ser chamados de “firger1.bmp” |
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“firger3.bmp”, etc, pois esse serdo 0s nomes procurados pelo programa para

realizar o {reinamento.

3.10.2 Classificar

O processo de classificago feito por esse programa é bem éficiente tanto no
que diz respeito a tempo como qualidade de acerto. Apos a rede treinada, um
computador, com as mesmas caracteristicas mencionadas para ¢ caso do
treinamento, leva em média 0,25 segundos para realizar a classificacdo. A
figura 3.19 a seguir mosira a tela do programa quando a classificagéo ja foi

realizada.

ﬁ‘. Tela Principal

Status do Processamento . Par
{Fim do Processamento I

Tempo Fingl de Frocessamernto
10,23?
Classificagdo

jArch

Figura 3.19: Tela final do processo de classificacdo
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Quando a opgéao “Classificar “ & escolhida no menu “Actions”, primeiramente
se tera que escolher qual digital se quer classificar, depois da escolha feita a

tela mostrada na figura 3.20 aparecera.

l, Entradas necessanas

| Arcuivo de Pesos da Camada Intetrediana
|c::'\_.pesasprim,lx_t

Arquiva de Pesos da Camada de Saida
Ic:\pesosseg.pct

_i

{ Ok

s naal

Figura 3.20: Entradas necessarias a classificagio

Nesta tela deve ser digitado os arquivos de pesos da primeira e segunda

camada com os quais o programa classificard a impressio digital escolhida

anteriormente.
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4. Anéalise dos resultados

4.1. Extra¢do de Caracteristicas

Como um todo, podemos dizer que os resultados obtidos pelo procedimento de
extracdo de caracteristicas foram satisfatdrios. Devemos notar que ha uma
diferenga entre exirair as mintcias e compara-las com um banco de dados.
Essa ultima sera tratada mais adiante. Nessa andlise, constardo apenas os

fatos relativos a extragdo em si.

O procedimento de extrag&o é formado por diversos procedimentos em série.
Como cada procedimento depende do resultado do procedimento anterior,
erros em uma dada parte do programa se propagam € Causam erros nas
demais partes. Portanto, cada parte do programa deve ser ofimizada, para que

O proximo passo possa ocorrer sem problemas.

O primeiro cuidado a ser tomado estéd na etapa de normalizagédo (item 2.2.2 1).
Deve ser escolhido um valor para a média de intensidade e variancia, e essa
escolha € arbitraria. Embora nesse caso uma pequena diferenca na escolha
néo cause muita diferenga nos proximos processos, existemn valores que
gerariam grandes erros no proprio processo de normalizagéo, inviabilizando o
resto do programa. Por exemplo, escolhendo uma média mais proxima de O, ©
resultado da normalizag&o geraria pixels com valores for a da faixa 0-255. A cor

desse pixel ndo mais seria um tom de cinza, e sim uma cor aleatéria,
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Outra parte muito importante é o filtro do campo de orientacédo (item 2.2.2.2).
Os valores do filtro sdo completamente empiricos, e forma obtidos pelo método
de teste e observagdo. Uma grande vantagem desse filtro & que os resultados
séo facilmente observéveis. O cuidado aqui deve ser tomado em dois casos.
Se o peso central for muito alto, o angulo que se esta filtrando predominara
entre os outros de tal forma que o filtro nao faria sentido, pois erros n&o seriam
bem corrigidos. Por outro lado, ponderar mais os outros pesos pode tornar os
angulos muito homogéneos, perdendo algumas pariicularidades importantes. E

necessario determinar valores no meio termo.

O célculo das frequéncias (item 2.2.2.3) a partir do vetor X também néo é
simples. E preciso determinar com precisdo quais s&o os picos e verificar se
880 razodveis. Novamente, a visualizagdo das curvas (vetor X) & uma
ferramenta de grande auxilio na escolha dos parametros que determinam se
uma curva é ou ndo senoidal. A desvantagem nessa parte & que nao & facil de

se visualizar se o resultado final (campo de frequéncias) esta bom.

A filtragem da frequéncia (item 2.2.2.3) tem problemas semethantes ao filtro
do campo de orientagdo. Aparentemente, diferencas nesses filtros n&o
gerariam mudangas consideraveis, mas pequenas mudancas geram grandes
diferencas na imagem melhorada, e, consequentemente, nas mintcias
encontradas. Para obter valores adequados para esses filtros, deve-se testar
varias opgdes e observar o resultado fingl para diversas imagens. Porém,

Mesmo assim ndo conseguiriamos determinar o valor 6timo.

A questéo do afinamento (item 2.3) e da extracdo de caracteristicas (item

2.4) é um pouco mais delicada. Ambos os processos sao simples, mais
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Uma pergunta que pode surgir & por que funciona para classificar se o campo
de orientagdo muda completamente. A resposta é simples, para classificar o
que € mais importante ndo € a variagdo pontual do campo mas sim como ele
varia ao longo da impresséo digital. Entéo os valores gerados sero totalmente
diferentes, porém o maior continuara sendo o mesmo e consequentemente a

classificagéo também.

Este problema poderia ser evitado se de alguma forma fosse garantido que o
individuo sempre colocasse o dedo na mesma posi¢éo que da primeira vez,
isso talvez néo fosse muito dificil pode-se por exempio restringir o espacgo para
que a pessoa coloque o dedo e esse espaco restrito tenha a forma de um
dedo, para que assim a pessoa saiba exatamente onde colocar o dedo e em

que posicio.
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6. Conclustes
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#itndet runcoes h

#define _funcces h

ffdefine TAM 512 // Tamanho da imagem

#define MASK i // Tamanho dos blocos de subdivisao da imagem

#define Mo 200 // Média desejada para a intensidade

#define VARo 2000 // Variincia desejada para a intensidade

ff[define vMLIN 1000 //valor abaixo do qual ndo se calcula o campo de orientagio

finciude <time.h>
#include <stdio.h>
#include <dos.h>

#include "c:\Poli\Trabalho de Formatura\Frograma\gradientes.h"

struct gradxy { // Variavel que guarda os valores dos
int %,v,z; // gradientes na diregfo z, v e z.
// A diregdo z nada mais & que o oposto

;
gradxy grad]TAM| |TaM); // da direg8c x. Isto &, z=-x.

double rot[TAM/MASK] [TAM/MASK]; // Guarda o angulo médic de um bloco
double freg[TAM/MASK] [TAM/MASK]; //Guarda a frequencis média de um bloco
double auxrot[TAM/MASK] [TAM/MASK];// Variavel auxiliar para 'rot’

cuble somax=U, somay=U;

int 1lii, 1si, 133, 1sj; // Limites da impressao digital

int Iiix,lsix,iisx,lsix;

double [inal [TAM] [TAM];

[
clock t start, end;
int tempo;
int ceni, ceni;
struct minucia

int posx,po
double ang;
bool cnd;
3
minucia lista[200];
lnt v1z[iUUJ[Ij,

Iy -

¥r

4 it L T
// Fung#c: BmpTolnt

// Finalidade: Recebe uma imagem, que deve ter o tamanho de TAMxIAM pixels, e

// conatrdi uma matriz de mesmo tamanho com o5 valores inteiros (O a 255} gque
//representam os tons de cinza dos pixels
e

for {int i
for {int j=
matriz|i



int h,w;
h—image->Hei
w=image->Widlh;

imago—>Width=TAM;
fori{int 1=0;i<TAM;i++)
for{int j=0;j<TAM;j++)1{
if{matriz[i] [ji>255) matriz(i] [3]1=255;
if{matriz[i]{jI<0) matriz[i][3j1-0;
image—>Canvas—>»Pixels{j]l{ij=(TColor) (malrixz[i] [}]*65753);
i
image->Height=h;
image->Width—w;
image->Visible=tLrue;
i
/Y . -
// Funcdoc: peso
// Finalidade: Atribui um peso para uma determinada posigdo do filtro do Campo
// de Orientacloc (ver explicacdc no item 2.2.2.2)
T ———
int pe {int i, int j, int u, int v){
int dist,out;
dist=pow({i-u,2)+pow{j-v,2);//representa a distdncia ac gquadrade de um pixel
gwitchi{dist) { [/{u, vy até o pixel {(i,3]
casce C:{out—5;brcak;!
case l:{oul=8;break;}
case Z2:{out=1Z;break;}
case 4:{out=2;break;}
case 5:{ocut—2;break;}
case B:{oul=Z;break;}
}
return{out) ;
]
f e -
/ Fungdo: Weimalizacao
// ¥inalidade: Padroniza o tom € o contraste das imagens

M
VAR

int
int

b

HOR

{int
{ini

M+=matri
M/ =pow (TAM,

o
o]

Hh

i=
3=

¢
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z
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Hel b

[
)
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<

<
]
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T

[
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das intensidades



for {(int i=0;i<TAM;itt) /7 Cadlculc da varidncia das intensidades
for {(int j=0;j<TAM; j++)
VAR+T=pow{ (matriz{i} [33-M),2};

double vx-=0, wy=0, vz=0;

faor (int i=0;i<TAM;i++} // Calculc dos gradientes
for {int j=0;j<TAM;3++) {
grad{il [3].x"Cradicente{'®', matriz, i,3};
grad[{i] []J].y Gradiente('y ,malrliz, i, j);
grad{i] {j].z=Cradiente{'z",matriz,i,j);
J
for (int u=0;u<TaAM/MASK;ul!l) // Varradura de bkloco em bloco
for {int v=0;v<TAM/MASK; v++) |
tor {imt i=0;i<MASK;i++} // Varredura de pixel em pizel,
for {int j=0;3<MASK;J++){ // dentro de cada bloco
vRA=2*grad [1+MASF u] [JHMASK  v] L xrgrad [14MASKYul [S4MASK*v] . v;
vyt=pow (grad[i+MASK*u] [ JtMASK*v] .x,2) -
pow{grad [i+MASK*ul [j+MASK*v].v,2);
vzi=Z*grad [1+MASK*u] [J+MASK*v] . zFgrad [i+MASK*ul [1+MASK*v] . y;

if {abs(vx)+tabs (vy}>VMIN) {
if {(vu>=0){ // Calculo dos angulos em cada
LE {vy»=0}{ // Maiores explicagbes no item
if {vx<vy){
rotful [vi=0.5%*atan (vz/vy);

1T -
Diueg

3%
AN

}

else|

rot{ul [v1=0.5*{1.57072623~atan{vy/ve));
i
}
elsel
if {vux<—abs{vy)}{
rot{uj[v]=0.5*{3.14159265+atan (vx/vy));
i
elsel
rot{ulfv]=0.5%{3.141522651{-1.57079633-atan{vy/vz)))
i
}
]
clsed

VAR/=pow [TAM, 2 ;
for (int i=0;i<TAM;it+) // Normalizaco
for {int j3=0;j<TAM; j++) {
if {matrizii] [J]>M)
matriz{i]{j]=Motsgrt(pow({(matriz[i] [j]-M),2)*VARo/VAR);
clse
matriz[i] [j]=Mo-sqgrt(pow({matriz{il{j]-M),2)*VARO/VAR];
i
Fungdo: CampobeQrientacao
Finalidade: Frimeiro cé&lculo do campo de orientacioc
id CampoDeOrientacac {int matriz[TaM] [T2AM!, double rot[TaM/MASK] [T2M/ IBR!



clsal
rot[u)] {vl=3,14158265-(0.5%{3.1415%265+({-1.57079633-
atan{vy/vzi)));
'
h
else{
if (abs{vx)<=vy){
rot[u][v]“3.14159265—(O.S*atan(vz/vy));
]
else{
rot{ul [v]=3.14159265-{0.5%{1 STCT2633~atan{vy/vz) ) };

e

fo—

1

}
else rot[u] {v]=10000;

vy=0; vx—0; vz—0;

[a—

// == = - =8 =
// Funcdo: Media
// Finalidade: Calcula o valor do angulo médic de uma regiio

double Media (double somax, double somay) {
double aux;
1f{{somar==0) && {somay==0) ) aux=0;
else //Novamente, ilem 2.2.2.2

if (somay>—-0)}1
if {abs {somax}>=abs {somay) ] {
aux=0.5*{1.57073¢-atan (somay/somax)} ) ;
]
clacf
aux=0.5%atan {somax/somay) ;
i
)
else!
if (abs (somax) >=abs {somay) } {
aux=0.5*(1.570796-atan (somay/somax) } ;
h
clseof
aux=0.5* (3.141i5%3+atan (somax/somay) ) ;
)]
i
]
elseq
if {somay»=0) {
if {abs (somax)>=abs (somay)} ) {
aux=0.5*(4.71238% atan{somay/somax)};
}
elsed
aux=0.5*%{¢,.283185+atan (somax/somay} ) ;
]
1
else(

if (abs (somax)>=abs {somay) } {



aux=0.5*{4.71238%-atan {somay/somax) } ;
}
elsei

aux=0.5* (3.141593+atan {somax/somay) ) ;
}

1
i
1
i

return{aux) ;

Func¢do: Verifica
Finalidade: Dado guatro wval
diferenga maicr do que 70 graus

P .
ores ada’]
del

de
entre dois

a
/7 .
S
I

bool Verifica(double se, double sd, double ie, double i

1

Ki
max=0;

bool o
double
double aux;
double vet[4];
et {0]=se*180/pi;
vet[1i=sd*180/pi;
vet[2]=ie*180/pi;
vet [3]=id*180/pi;
for {int i=0;i<3;i++){

for {(int J=i+1l;j<4;j++){
ux—abs (vetlil-vet{4])

AUX 30U

W

r

aux=180-aux;

enga maxima
orha true

o

"ungdc: FiltrarCampo
inalidade: Calculc melhorade do campo de orientacao

[

FMASK

void FiltrarCampo (double rot [TAM JITAM/MASK] ) {

(int
{int
somax=_0;
for (int
for (int
10 (rol[ul [wv
somaxt=sin (2*rot [
somayt=cos (2*rot [

}
se=Medla {somax, socmay] ;
somax=0;
for {int

iy or

d) {



Tor {inl v=j;v<=j4+2;v++){
I {rotiu] [v]i=10000}{

gomaxt+=sin (2*rot{uj [v])*peso{i,j,u,vi:
somay+—cos {Z*rotiul [v] ) *pese i, 3,u, v) ;

—

4

1]
sd=Media (somax, somay} ;

semax—0; semay—0;

for (int u=iju<=i+2;u++)
Lo {int v=3-2;v<=i;v++)

it {(rot{u) |vj

=1
somax+=sin {2*rotul [v))*pesoli,§,u, v);
50id y += LUb(E*LUL[u}[vj)*pebo(i,J,u,v);
}
i
ie—Media{somax,scmay}-
somax=0; somay=0;
for {inl u=ij;u<=i4+2;u++}
for {int v=j;v<=j+2;v++) i
1 {(rotlul [v]!1=100003¢
SOMa X5 in(E*LoL[u][v])*peau(i,j,u,v);
somayt=cosi{Z*rotiul [v] ) *pesc(i,j,u,v);
}
!
id=Med’a(somax,somay);
3f(Verif1c‘(s-,sd,'e,id}){ /7 3e nde¢ houver problemas com oS angulos,
somax=sin{2*se} +sin{2*sd)+sin(2*%ie)+sin{2*id);// calcula média final
somay—cesa (2%ge) toos (2% d}+ces {2*%ie)dcos (2%id);
auxrot[lj{j]=Vedld(50max,somay);

else auxrot[i] [jl=rot[il[j]:; // Se ndc, mantém o valer anterior

]

for (int i=2;i<TAM/MASK-2Z;i-+)
for {(int j=2ij<TAMf%ASK—2;j++){
rot[ij[3]=auxrot[i] [j]; // Atualiza a matriz rot

a&lidade: Desenha &dngulos na imagem {func&c somente utilizada durante o
// desenvolvimento do software, como forma de verificar visuzlmente o resultade
// do campo de orientacio)

int a,b,c;
\TAM/}{A;JI\;'V’; | ) 1

it {(auxrot[uj[vJ>U.78b398)&&(auxrot[u]LVJ<2.356194})[
int j=b;
for (int i=a;i<{u+1)*MASK-1;i++){



~auxrot{uj [vl)*(i-a+1

—

1

else di+=0.5;

e=d;

j-b-c;
}
1=b;
for (int i=aj;i>=u*MASK;i--)!
matrizf{i] [j]1=255;
d-Lan {1.5707%6-auxrot [ul [v])*{a=-i+1);
if {d<0) d&-=0.5;
e d+—0.5;

int i=a;

for (inft j=b;j<(v+l)*MASK-1;j++){
matriz[i][5]-255;

d=tan {auxrot[u] [v])*{j-b+
il {d<0) d-=0.5;

else d+=0.5;

S=clls

iTa—c;

3

[N

i

i—a;

for (int j=b;j>=v*MASK;j--){
matriz{i] [j]1=255;
d—tan{auxrot[u] [vI}*{b-j+1);
if {d<0) ¢-=0.5;
else d+=0.5;
c=ay
i=a+c;

S

// Fung&o: Calc Freg
// rinalidade: Calcular a frequencia senoidal de x {na verdade, retorna o
// periodo de x)

int aux;
float resultado=0;
struct pontos| //Guarda supostos picos e vales (pos) & o tamanho {seq)

int seq,pos;
H
strucl picos{
int ant,prox,pos;
1
int valor; // Indica se a seguéncia de pontos é decrescente ou crescente

pontlos 4a[MASK*Z];

r

[

i // Numerc de supostos picos e vales
i

0s
// Ntmeroc de picos reais



1AL (#f1]>x[0]) valor-1;
else valor=-1;

for (int k Q;é‘SE;“+.}{
if {valor<U){ // Se a sequéncia for decrescente & o ponto for inferior ao
if (x{k]<x[k-1}) valor-=1;// anterior, aumentax ¢ tamanhc da seguencia
elsef
alil.seg=valor; // Se nic, terminar a sequéncia negativa, comecar
afij.pos=k-1; // uma positiva, mas guardar ¢ tamanho da sequéncia
valor=1l; / & a posigfo final da mesma
i++4;
!
i
else{ //valor>0 An&logo ac caso a cima
it (xlkI>x[k-1]) valor+=1;
clsed

d{i].seg~valo

P P

a[ii.pos=k- 1;

valor=-1;
i+4;
}
1

!
afil.seg=valor; // Guarda ¢ Gltimo pontc também
a[i] .pos=MASK*Z-1;
for {int k=0;k<i;k++

M
)&&(alk+l}.seq<=-2)}{ // Detecta e armazena picos
1 o~ »
1.35eq;

bijl.prox=abs(alk+1].seq);
b{jl.pos=alk] .pos;

1f ((alk].seqg>=2

J++;

i

]
if (j<2) resultade=-1; // W&o se pode obter frequéncia com menos de 2 picos
else{ // Ver item 2.2.2.3 para maiores detalhes

for {int k=l;k<j;k++} 1f (abs{blk].ant-b{k-1].prox)>3) rcsultado—-1;

if (j»2) for {inl k=2;k<j;k++) il {ebs{blk].pos-2*b{k-1] .post+b k-

2] .pos)>3) resultado=-1;

if {rcsultade==0){
resultado=flocat (b{j-1].pos-b[0].pos)/(i-1);
aux=int ( (MASK*2~3} /resultado);// Dado um pericdo, gqual & o minimo de picos
if{j<aux} resultado=-1; // esperado. Se o numerc obtido for menor que
if{resultado>=15) resultade=-1;// esse minims, ndc se deve considerar.
if(resultado<=3) resultado=-1;

}

return({resultado) ;

Fung&o: Interpolar
// rinalidade: Interpola valores de frequéncia

bool sair = false;

double freql[lAM/MASK] ['LAM/MASK]; //Matriz auxiliar de frequéncias

int i=3; //Cé&lculo dos limites da impressic
inb J;

do{

r(j=0; j<TAM/MASK; 5 ++)



'sdir);

(]
T

Lor (J=0;j<TAM/MASK; j++)

if(freqi} [31!1=-1)
sair=true;
lei—i;
i
i-—;
jwhile(l!sair);
3=3;

Sair=lalse;
dof{
for{i=0;i<TAM/MASK;it++)

if{freqi] [3]1—-1}{

sair=Lrue;
1ij=3;

do
for {i=0;i<TAM/MASK;it++)
if{freq[i] {31 !=-1}1
salr=true;
1=5-3;
i
J——i

Jwhile{!sair);

for
for

—

if (soma2!=0) fregllil[jl=somal/scmaZ;
else freqi{il{]j] freq{il{)];

e

1
for {(i=lii;i<=lgi;i++)
for (j=lij;i<=lsj;j++){




freq[il [{]=freql{i] [{];
}
)

f e e

// Fungdo: Filtrar Freq
// Finalidade: Eliminar ruidcs nas frequéncias calculadas

e

volid Filtrar_ Freg(double freq{TAM/MASX] [TAM/MASK]) {

int peso, dist;
double fregl[TAM/MASK] [ TAM/MASK] ;

for (int i=0;i<TAM/MASK;i++)

for(int j=0;J<TAM/MASK;jH+){
fregli] [jl=freqg{i][j];

}

for{int i=lii;i<=lsi;i++} // Varre a impressdo, dentro dos limites cbtidos

for{int j=lij;j<=lsj:jt+)! // anteriormente.
double soma=0;
int div=0;
for(int u=i-3;u<=i+3;u++)
for{int v=3-3;v<—j+3;v++) {

if ((u<1ii)ii(u>lsi)i§(v<lij)Iifvblsj)) peso=0;

else {
dist=pow(i-u,2}+pow(j-v,2); // Atribui o peso correspondente a
switch{dist){ // do ponto

case Oz {peso-20;break;]
case l:{peso=10;break;}
case Z:{pesc=6;break;}

case 4:{pesc—5;break;}
case J:{peso=4;break;}
case 8:{peso=3;break;}
case D9:{peso=2;break;}
case 10:{peso=l;break;]
case 13:{peso=1;break;]}
case 18:{pesc=l1;break;}

i

1
1

div+=peso;
soma+=pesc*freql[u] {v];

//_ ______________ S, — _———— By e - — — —_——— ——

// Fung8o: Freguenci

volid rrequencia{int matriz[vam] [1AM], double rot [LAM/MASK] [1AM/MASK], double

freqiTAM/MASK] | TAM/MASK] ) {

int u,v;
int x{MASK*2];
Eloat kernel|/]|Lf];

int aux;

Lor (lnl [-0;i<7;i+4)

for {imt 3=0;3j<7;35++ ¢ // Preenche os coeficientes do kernel
aux=pow (3-1i,2)+pow{3-3,2);



Vo

switch{aux) {

case O:{kernel{i][j]=l3.3;break;}
cage l:{kernel[i][31=12.6;break;}
case Z2:{kernel[ii{j]=11.9;break;}

case 4:{kernel[i][j]=10.7;break;}
case 5:{kernel[i][j}=10.1:break;}
case 8:{kernel[i][j]=8.5:break;}

case S:{kernel[i]l{j]1=8.1;break;)
case 10:{kernel{i][j]=7.6;break;]
case 13:{kernelli][j]=6.5;break;}
case 18:{kerne][i][j]=4.9;break;}
}
h
for {int i=0;i<TAM/MASK;it+)]
freq[il[01=-1; // "Zera" as bordas
Lreq[i] [TAM/MASK-1]1=-1;
freq[O0] [1]=-1;
freqTAM/MASK-1] [i]=-1;
!
for {int i=1;i<TAM/MASK-1;i++)
for (int 3=1;3j<TAM/MASK-1;3++) (
fer (int k=0;k<MASK*2;k+4}{
x{k]=0;
for (int d=0;d<MASK;d++){
u—O.5+i*MASK+MASK/2—1+(MASK/Z—d)*sin(rot[i}[j})+(k-
MASK) *cos (rot[1][j1}:
v=0.5+]*MASK+MASK/2~ L+ (d-MASK/2) *cos (rot [i] [31)+ {k~
MASK) *sin(rot[i][j]):
x{kl+=matriz[u][v]l; // Calcula o vetor X, na orientacdo correta
]
}
freqii][ji=1/Calc Freq(x):
}
Interpelar (freq, kernel);
Filtrar Freq(freq);

id Gabor(int matriz[TAM] [TAM], double rot [TAM/MASK] [TAM/MASK], double

freq{TAM/MASK] [TAM/MASK]) {

const int G=5; // Varidvel relacionada ao tamanho do filtro de Gabor (2*G+1)
double soma;

float sigma=4;

double min=100000;

double max=-100000;

int ci,cj;

double c¢,gab;

double «l,c2,¢3,cd,aux;

lsiz=({1lsi+lii}/2)*0.15+1si*0.85; // Reduz os limites da impressédc obtidos
Isjx=(({1sj+1i3)/2)*0.2+1sj*0.8; // anteriormente, para garantir a aplicacgic
Iiix={(1si+1ii)/2)*0.25+1ii*0.75; // do filtro sempre dentro da impressi3o
Lijx={{1s3j+1i3}/2)*0.2+1i3%0.8;




for {int 1-1iix+G;i<isix-G;i++)
for {int J=lijx+G;j<lsix-G;i++)}{
ci=i/MASK;
cj=3/MASK;
soma=0;

for {int EF=0;EF<=G;EF++){
c=cos (pi*EF/G) ;
for (int EO=0;EQ<=G;EQ++) {
gab=exp (-0.5* (pow (EQ, 2) +pow (EF/ (2*G*freqci] [c3]),2) ) /pow(sigma, 2));
aux=0;
// Devido a dupla simetria do filtro, o cdlculec dos coeficientes
// & feito de quatro em quatro.
cl=-FO0*sin(rot[ci] [cjl);
c2={EF/(2*G*freq{ci}[cj]))*cos(rot[ci][cj]);
c3=E0*cos{roticil[ecj]);
cd=(EF/ (2*G*freglci] [cj]) ) *2in(rot[cil il );
if({BC!=0)&& (EF!'=0)){
aux+=matriz{int(i+cl-c2+0.5)] [int (j+c3-¢c4+0.5} ]4tmatriz{int (i-
c1+c2+0.5)][int(j—c3+c4+0.5)]+matriz[int(i—cl—c2+0.5)][int(j—c3—c4+0.5}];
}
elsel
if (EO1=0) {
auxt+=matriz(int{i-ci+0.5)] [int{j-c3+0.5)];
}
Lf(EF!-0){
auxt=matriz(int(i-c24+0.5})] [int (j-c4+0.5)];
}
)
soma+=(aux+matriz£int(i+cl+c2+0.5)]{int(j+c3+c4+0.5)])*gab*C;
}

)
final[i] [j]=soma;
}
foer {(int i=11ix+G;i<lsix=-G;i++} // Loop cuja finalidade & determinar os
for (int j=lijx+G;j<lsjx-G;j++}{ // valores minimo e mdximo da somatéria
if (final[i][j]<min}) min=finall{i]([j];
if {finallil[j]l>max) max=finalli][j];:
}
for (int i=0;i<TAM;i++)
fer (int 3=0;3<TAM;j++)
matriz[i] [j]1=254;

for (int i=1iix+G;i<lsix-G;i++) // Loop cuja finalidade & transformar,
for (int j=lijx+G;j<lsix-G;j++){ // linearmente, os valores da somatéria em

matriz[il [J1=int {255+ (final[il [j]-min)/ (max-min));// valores de O a 255

]

i E==-m== = a==—==
// Funcdo: Enhancement

// Finalidade: Melhorar a imagem da impressdo digital

vold Enhancement (int matriz[TAM] [TAM]} {

Normalizacao (matriz);

CampoDeOrientacac{malriz, rot);



FiltrarCampo{rot};
Frequencia (matriz, rot, freq);

int n; //Recélculo dos limites da impressio
int x=-1;
int vy
do{
n=0;
x++;
for (y=0;y<TAM;y++) if (matriz[x] [y]<150) n++;
}while (n<10) ;
lii=x;
®=TAM;
do{
n=90;
K=z
for (y=0:y<TAM;vy++) if (matrizixz] [y1<150) n++;
}while (n<10);
lsi=x;
=—1;
do{
n=9;
y++3;
for (x=0;x<TAM;x++) if (matriz[x] [y]<150} n++;
}while{n<10};
lij=y;
y=TAM;
dof{
n=0;
y——7
for {x=0;x<TAM;z++} if
lwhile (n<10j);
lsi=y:

{matriz{x] [v1<150) n++;

.

start=ciock();

Gabor (matriz, rot, freq);

end=clock() ;

tempo=(end - start) / CLK TCK; //Mede o tempo de aplicacic do filtro

//MostrarAngule (matriz, rot);

void Thinning({int matriz[TAM] [TAM], double rot [TAM/MASK] [ TAM/MASK] ) !
int u,v,ci,cj,min,xmin,n,a,b;

for (int i=liix+5;i<lsig-5;i++)

for {int j=lijx+5;j<lsix—5;j++){

min=10000;

ci=i/MASK;

cj=]/MASK;

for (int x=-2;x<=2;x4++){ // Varre uma vizinhanga do peonto, na direcido
u=int (i+x*cos{rotieil[cj])+0.5);// normal & orientagfo, e detecta o



v=int {j+x*sin{rot[ci] [c]]}+D.5);// ponto de mencr valor.
1f (matriz{u]lvi<min) |
min=matriziu] [v];
Xmin=x;
}
]

if {(xmin==0) finallil[jl=1; // Caso o ponto de menor valor seja o préprio

else final{i][j]=2504;// ponto, ele se¢ torna um ponto da impressfo alfinada
!
for (int i=liix+5;i<lsix—-5;i++)
for (int §=1i4x+5;9<lsix-5;9++) {

matriz{il [J]=int (finallil[31);
}
for (int i=11ix+5;i<lsix-5;i4++) // Remove pixels indesejados (ver item 2.3)
for {int j=liijx+b;j<isix~5;3+4+){

if (matriz[i]l[§]==1){

if{(matriz[i-1]{3]1==3} || (matriz[i+1][Jj]1==1)}{
1f{(matriz[i] [§~1]1==1)| | {matriz[i][j+3i1==1)) matrizi{i]lijl=254;

j
}
for {(int i=liix+5;i<lsix-5;i++)
for (int j=lijx+5;i<lsjz~5;3++){
if{matriz[il[j]l==1){
n=0;
for{u=i-1l;u<=i+1l;u++)
for (v=j-1;v<=3+1;v++) {
if{{matrizfu] [v]==1}&&({ul=i) || (v!=3))){
n++;
a=u-i; b=v-j;

}

}
if {(n==1){
if {a==0}{
if({matriz[i-1][3-2*b]l==1)!] (matriz[i}[j~
2*bh]==1) | | (matrizg[i+1] [§-2*b]==1}}{

matriz[il[J-bl=1;
if {(matrizii]{j-2*bi==1)&&{(matrizi{i-1]1[j~-
2%b]1==1} || (matriz[i+1} [j-2*b]==1))) matriz[i] [)-2*b]=254;

}

else

if({matriz[i+2] [j-bl==1)i|{matriz[i+2]1[j-2%b]==1)){
matriz{ii+1] [§-b]l=1;
if ((matriz[i+2][j-bl==l)&&((matriz[i+2}[j-
2*b]==1) | | (matriz[i+2])[J]==1))) matriz[i+2]{j-b]l=254;

)

else

if((matriz[i-2]1[]-bl==1)1|{matriz[i-2}[i-2*b]==1}))1{
matriz{i-1][3-bl=1;
if {((matriz{i-2][j-bi==1l)&&{(matriz{i-27(j-
2*b]==1) | | (matriz[i-2][4]l==1))} matriz[i-2][i-b]l1=25%4;

}

}
if (b==0){

if({matriz[i-2*%al [§-1]1==1} || (matriz[i-2*a][§]1=--1)!| {matriz[i-
2*al [J+11==1)}{
matriz{i-a][j]l=1;
if ({matriz[i~-2*%al[j]==1)&&((matxiz[i-2%al[j-
1]==1) || {matriz[i-2*a] [§+1]1=—1))) matriz[i-2%a] [j]=254;



alse
if((matriz{i—a][j+2]==1)l|(matriz[i—z*a][j+2}==1)){
matriz{i-al[j+1]=1;
if ({matriz[i—a][j+2]==1)&&((matriz[i—
2*al [3+2]==1) |t (matriz{i] [§+2]==1})) matriz[i-al{j+2]1=254;
1
else
if({matriz[i-a]{j-2]== Vil {matriz[i-2*a] [§-2]==1)){
matrizl[i-a] [J-11=1;
if {(matriz[i—a][j—2]=r1)&&((maLriz{i—Z*a}[j—
21==1) | [ {matriz[i] [1-2]1==1))} matriz[i-al[j-2]=254;
h

}
if {(a*bi=0}){
if((matriz[i—E*a][j—2*b]== )!l(matriz{i—2*a][j—
bij==1) | i (matriz[i-a] [j-2*b]==1)){
matriz[i-a][j-b]=1;
if (matriz{i~2*a]lj-2*b]==1){
if (matriz{i-al[j-2*b]==1}{
n=0;
for{u=i-a-I;u<=i-a+l;u++)
for{v=j-2*b-1;v<=3=2%h+1;v++) {
if (matrizlul [vi==1} n++;
}
if (n==3) matriz{i-a) [j-2%b]=254;
}
if (matriz[i—Z*a][j—b]==1)[
n=0;
for{u=i-2*a-1;u<=i-2%a+1;u++)
for{v=j-b=1;v<=j=b+1;vi+){
if {(matrizul [vl==1) n++;

if (n==3) matriz[i-2*a]l[j-b]1=254;

}

}
elsel
1f{matriz[i-a][j-2*b]==1){
n=0;
for (u=i-a-l;u<=i-a+l;u++)
for (v=3-2*b-1;v<=3-2*%p+1;v++) {
if (matrizlul [v]=—1) n++;

}
if(matriz|i-2*z][j-b]l==1) n-~-;
if {((n==3)&&(maltriz{i] [j-2*b]j==1)) matriz[i~a][j-
2*p]=254;
if (p==2) matriz[i-a)][j-2*b]=254;

}

if(matriz{i-2*al[j-bi==1){
n=0;
for(u:i-2*a~1;u<=i—2*a+1;u++)

for(v=j-b-1;v<=j-b+1;v++){
if {matrizlu] [v]==1) n++;

}
if(matriz[i-a) [§-2*bl==1) n--;
if ((n==3)&&(matriz[i—2*a][j]== }) matriz[i-2*al[3-
b]1=254;
if (n==2) matriz[i-2*a][j-b]=254;

}



J

1
i

elge

if((matriz[i][j—2*b]—=1}||(matriz[i+a]{j-2*b]==1}){
matriz{il [j-b]=1;
if((matriz[i][3j-2*b]== J&& (matriz{i+al] [J-2%b]==1)}1

if(matrizli-a] [j=3*b]==254) matriz[i]l [3-2*b]=254;
if((matriz[i+2*a][j—b]==254)&&(matriz{i+2*a][j—
2*b]==254) s& (matriz[i+2%a)] [$-3*b]==254)) matriz{i+al [j-2*b]=254;
}

}

else
if((matriz[i—Z*a}[j]==1)ll(matriz[i—2*a][j+b}==1)){
matriz[i-al[j]=1;
if((matriz[i—z*a][j]:: )&& (matriz[i-2*%al[j+b]==1)){

if(matriz[i-3*a] [j-b]==254) matriz[i-2*a]{j]=254;
if{(matrizli-al[j+2+*b]==254)s& (matriz{i-
2*al [3+2*b]==254) s& {matriz{i-3*a] [14+2*b]==254)) matriz[i-2*a][j+b]=254;
}
]

// Funcdo: Remover
// Finalidade: Remover um elemento da lista de mindcias

volid Remcver {int removido) {

for (int i=removido;i<cont-1;i++)/{
lista[i].posx:lista[i+l}.posx;
lista{i].posy=lista{i+1].posy;
listafil.end=listali+l].end;
liastalil.ang=lista[i+l].ang;

// Fungdo: EliminarVizinhos
// Finalidade: Transforma um conjunto de mindcias préximas {provavelmente
// talsas) em uma Unica minucia

void EliminarVizinhos (int pos,int &gx, int &gy, int &num){
for {int i=l;i<=vizipos][0]:;i++}]
if (viz[vizipos][i]]{i6]l==0){
num++;
viz[viz[posl[i]][E6]1=2;
gx+=lista[vizipos]{i]].posx;
gyt=listal[viz[pos] [1]].posy:
EliminarVizinhos(viz[pos][i], gx, gy, num) ;



void Extract(int matriziTAM] [TAM], double rot {TAM/MASK] [ TAM/MASK] ) {

int n;
int dist;
int gx;
int gy:
int aii,aif,aji,ajf;
cont=0;
for (int i=1iix410;i<lsix~10;1i++)
for {int 3=1ijx+10;3<1six~-10;j++){
if (matriz[il[j]l==1){
n=0;
for {int u=i-l;u<=i+1;u++)
for (int v=i-1;v<=341 w4}
if {(matriz{ul [v]==1) n++;
if {(n==2){ // MinlUcias de final de crista
lista[cont].posx=i;
listafcont].posy=3;
lista[cont].ang=rot[(int)(i/MASK)}[(int)(j/MASK)];
lista[cont].end=true;
cont++;

if (n==4){ // MinUcias de bifurcagio
lista[cont].posx=i;
lista{cont].posy=j;
listalcont].ang=rot[int (i/MASK)] [int (j/MASK)];
lista[cont].end-false;
cont++;

i
1
for {int i=0;i<cont;i++){ // Eliminz bifurcages préximas
if (listaii].end==false)|
for (int J=i+l;j<econt;i++}{
if (listalj].end==false) |
dist=pow(lista[i].posx—lista[j].posx,2)+pow(lista[ij.posy-
listalj].posy,2);
if (dist<9}{
Remover (j);
cont—--;
J——i
}

i

!

for (int i=0;i<cont;i++){ // Elimina bifurcagdo préxime de final de crista
if (listali].end==false)
for {int j=0;j<cont;j++) {
dist—powtlistafi]‘p05x—1ista£j].posx,2}+pow(lista[i].posy—
listal[j].posy,2);
if {{dist<=2)a&{il=3)){
if (jri)f
Remover {3} ;
Remover (i) ;



elsed
Remover (i) ;
Remover(j) ;

}
conbt-=2;
J=cont;
i--;

}
i
for (int i=0;i<cont;i++){ // Constroéi lista de vizinhanca (registra quantas
viz[i] [0]1=0; // @ quem sd3c as minticias préximas de uma dada minticia)
viz[i][6]=0;
aii=listali].posx~8;
alf=listali] .posx+8;
aji=listali] .posy-8;
ajf=listalil.posy+8;
for (int J=0;j<cont;j++){

if((lista{j].posx>aii}&&(lista[j].posx<aif)&&(lista[j].posy>aji)&&(lista[j
l.posy<ajfiesa(il=]3)){
dist=pow({listal[i].posx-lista[j]l.posx,2)+pow(listali].posy-
listalijl.posy,2);
if{dist<=50)}{
viz[1][0]+-1;
viz[i][viz[i][0]]=];

i
1
if(viz[i][0])==0) viz{i]l[6]=1;
1
for {int i=0;i<cont;i++){ // Elimina dois finais de crista préximos
if (viz[i] [0]==1){
if(vizlviz{i]{1]]([0}i==1){
viz[i]l[6]1=2;
vizl{viz{i][11][6]=2;

i

for (int i=0;i<cont:;it+){ // Transforma tré&s finais em uma fnica mintcia
1f {((viz[i][6]-=0)&&(viz[1i][0]==2)){
if {({vizlviz{i] [1]13[0)==2) || ({viz{vizii][2]}[0}==2)){
vizli)[6]1=3;
vizl[viz[i][1l1][6]=2;
viz[viz[1][2]1]1[6]=2;

gx=int(float((lista[i].posx+lista{viz[i][1]].posx+lista[viz[i][2]].posx)/3)+0.5)

r

gy=int (float ((lista(i].posy+lista[viz{i]{1]].posy+listalviz[i] [2]].pcsy)/3)+0.5)
listal[i] .posx=gx;
listali] .posy=gy;

}

tor(int i=0;i<cont;i++){ // Remove conjuntos de minicias



if {viz[i]{6]==0}{

int num=1;
viz[i][6]=4;

gx=listal[i] .posx;
gy=listal[il.posy:;
EliminarvVizinhos{i, gx, gy, num) ;
lista{i) .posx=int (float (gx/num)+0.5};
lista{il.posy=int(float (gy/num}+0.5);

}

for (int i=cont-1;i>»=0;i--){ // Atualiza a lista de mintcias

if (viz[ij[e]==2){
Remover{i}:;
cent——;

o

fendif



#ifndef _gradientes h
#define _gradientes h

// Essas varidveis determinam gual métode serd utilizado para o
// célculo do gradiente

bool SobelCheck=false;

bool simpleCheck=true;

;7

[

// Funcio: Sobel

// Finalidade: <Calcula o gradiente, ta
// de um ponto de uma matriz

e T — — . —— S ————— e -

7

intl GradSobel {char escolha, inl malriz[TAM] [TAM], inl i, ianl j){

int resultado;

if {i==0) i++; // © método de Sobel ndo funciona nas

if {i=—=TAM-1) i-; // bordas. Por isso, resolvi considerar

if {(§==0} J++; // que 03 gradientes dos pontos das bordas
if (j==TAM-1} j--; // s&o iguais aos seus adjacentes.

switch {escolha){

case 'x"f“esultadﬂ—matk*hfi+l]{j—1]+matriz[j+1][j+1]+2*matriz{i+1
—matrlzil 1]J[j~1}-matriz{i- 1) {j+11-2*matriz[i-1]{j];break;}

case 'y':{resultado=matriz[i- 1}[j+1]+n'triz[i+1]{j+1]+2*matriz[i][
—matrlz[l ijl3- lj—matrlz[1+1][3—1]—2*matrizfi][j—i];break;}

casc {rcgultado—matrjzfl*l}fj—l]+uatriz[i+1][j+1]+2*matriz[i+l
—mdlLiéfi I [-1}-malrivii-1 [3+1]-2%matcix{i-1]{]];

resultado*=-1; break;}

o

// rungio: Gradsimples
// Finalidade: Calcula o gradiente, tanto em 'x' como em v,
// de um ponto de uma matriz

if {escolha=='z'}{

If {i==0) L++; // Kdo funciona na borda horivontal de clma
resultado=matriz[i- L1i{jl-matriz{i]l[ji;

}

eise
if {i==TAM~1) i~--; //Idem para a horizontal de baixo
if (j==rAM-1i} j-=; //ldem para =z vertical da direita
if {cscolha=—1'x"}{

Lesullddo:mdLLiz[i+1}[j}*umi:iz{i][j];

}
elzsel

resultado-matricz [9+1]l-matriz{i] [§]

~~
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i
return{resultado);

/o . | — T -
// Fungio: Gradiente
// Finalidade: Calcula o gradiente, tanto em 'x’' como em v,
// de um ponto de uma matriz, utilizando um dos metodos acima,
// de acordo com configuracac do usuario

if {ScbelCheck} resultadO‘ﬁradSobel(escolha,matriz,i,j);

- o L] —~ 1 ] L B I L] r L) 1 . . [T,
i (Di![lpJ_eL.ileL'.K} resul Lado=Gracds] mplesisscoina,mabrle, i, 1) ;
relurniresullado) ;

[



#ifndef _arquivos

#define dlqquS fl

#include <string.h>
#include <stdio.h>

#include <sidiib>

#inciude <time.h>

#nciude "Unit1.h"
#Include "Unit2.h"

EHEY e L] In 40 I
‘ITIII‘JII.I Lo g ] {IRV N

#inciude "red.n"

// nome dos arquives de entrada do programa
char nome_arqij50j,nome_arq2{50j,arg saida[50]j,arq_entrada[50];

H

/i Rotina que carrega as impressdes digitais durante o treinamneto
1
void abre_arq(Timage *imagem1 ,int num){

char arq1[100};
char par{i];

= D AL s £ nd T D 3 EM .
i omm3->CditS->Getl exioui{arg_entrada,50);

sdlauaryg_eniada, ninger’),
strcai{arq_entrada,par);
ntr—\ntln-n o da" bmp"}.
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inti;

fﬁf{i—_'o i<E; |++}
fscanf{nome_arq4,"%1d",&saidas_des1{i});

}

I

fi Fungdo que salva em arquivos os pesos caicuiados peio ireinamento

FILE *pesosprim;

FILE *pesossag;

ini i,j;

pesssprim = fopen("c:\pesosprim.txt" "w");



pesosseg = fopen(’c:\pesosseg.bd","w");

for(i=0;i<1024;i++)
:

for(=0;j<15;j++)

fprintf \pcauopi fm, "% u'i",ﬁ"SﬁS_ﬁﬁm{i}ﬁ}};
fciose(pesospnm),
for(i=0;i<15;i++)
for(j=0;j<5;j++)
fprint(pesosseg,"%M\n", pasos_seg[il[il:
fciose{pesosseq);

}

F/
/ Fung&o que carrega o pesos correios para a matriz
i/
int "rrega_pesos{void}{
int i.j;
FILE *pesosprim:

FILE *pesosseg;

if{pesosprim = fopen \..ume _argl,"r")y== NULLX

Form2->Edit1->Texi = "Arquivo inexisiente”:
romm3->Edit3->Text = "Arquivo Inexistente®;
rorma->|:an3 ->Update();

e ) "-“\\_— H II
1 R Niddia

il{(peSG seg = fopen{nome_ arje,
>Ea|12-> T ex1 "Arguivo mexnstente
-~
Lol

] + 1
difd->Text = Arqw'v'c inexdisiente™ :

Y
L1

reiurn G;

ot

r

Tor(i=0;i<1024;i++)
or{=0;j<15j++)
fscanf(pesospiim,"%ifin" &pesos_prim{ilf});
o !Gac\peauapﬂnu,
for(i=0;i<15;i++)
=0;j<5j++)
rscanr(pesosseg,’%lf\n &pesos_seg[iilii;

OSG\p 50552G);
retum i;

£ p{ —
i

desi = StrToint{Fom |->0|as1-> Text);
des2 = ShTeln It(FOI mi-> C=334->Toxt\;
des3 = SuToini(Fomii->clas3->T ext);
aesd = ShiTolnt(Formi->clas4->Text);
des5 = StrToln{(Form1->cias5->Texi);
saidas_coiretas = fopen("c:\temp\\piautaai dasdes.td","a");



[N
sorretas,” d
S,“%u",dﬁau;;

printf{saidas_corretas,"%d" des4);
fprintf(saidas_corretas,"%d\n" dess);

#endif

#ifndef _transf_h
#define _transf_h

#define tarm 32
#incfude <math.h>

/ Variaveis dos pesos das camadas
gty =

doubie pesos_primi1024jj15],pesos_seg[15][5];
/[Variaveis com a entrada e saidas das camadas

Mmoo

doubie vei_ent{i024],saidaz{1 5j,saida3{5],saidaj5];

7

i

if Fungéo que calcuia o vetor de saida da camada escondids
i

void saidai(doubie saidaz_iemp[15],double eniradaji024]){

for (i=0;i<15;i++)
for{j=0,j<1024j++}
saida2_temnpiij += (entradaijj * {pesos_prim{jj[il));
for {=0;i<1024;i++)

~ . s I3

saidaZ_templij = 1/(1+exp(-saida2_tempji}));

1
I

i

f

H Eoavman X Al ool L I A e
/i Tungao Giue calcula & saida final da rede
.

i




for(i=0;i<5;i++)
saidaff] = 1/{1+exp{-saida3[i]);

}

1

/i Rolina que mostra na ieia a dassificagio da impressdo digital
i
i

void mostra_valor(TEdit *clas1, TEdit *clas2, TEdit *clas3, TEdit *clas4, TEdit *clas5){

aouble maximo=0;
int ciasse,i;

for (i=0;i<5;i++)
if {(saidafij> maximo){
classe = |;
maximo = saidafi];
1
H

swiich (classe){

case O;
Form1i->Editd->Texi = “Whroi™
break;
case 1;
Formi->Edit4->Text = "Arch":
break:
case 2:
rormi1->Edii4->Text = "Tended Arch";
break;
case 3:
Form1->Editd->Text = "Loop Direito™;
break;
case 4.
Formi->Ediid->Text = "Loop Esquerdo”;
break;
H
’
#endif
ff i TTTTTETEEREEIm da Rede Neural em Sitereesiiciotioiorsoioi

A.2.3. Trein.n

-

—

#ifndef _trein_h
#define _trein_h

#inciude <math.h>
#inciude "arquivos.i*



#define eta 0.8

#define alfa 1
/f Variaveis com as corregbes dos pesos
doubie deita_prim[1024][15],deita_seg[15][5];

i
// Fungo que cera as matrizes de saida das camadas para recomego do processo
‘[!
void zeramatriz(void){
inti;
for(i=ﬁ'i<26'i++)
idaa{1}—0;
for(i=0;i<5;i++){
saida3[i]=0;
saidafij=0;
h
}
i/
/! fungao que inicializa 05 pesos da rede
1!
void inipesos{void){
intij;
for (=0;i<15;i++)
for (=0,j<1024,j++){
pesos_primijlfif = (1+random{5))*0.1;
delta_prim{jli] = o;
}
for (i=0;i<5;iH++)
for (f=0.i<"i5;i++){
pesos_sagiiil] = (1+random{E)*0.1;
ueita _segijliij = §;
h
}
I
/iFungao que recaicuia 0s pesos entre a camada de saida e a escondida
i

STBIK

vuid recalque_seg(ini said 51K

jomd § 5-
i i,j;

for(i=0;i<5;i++)
'Fcrfi—n-iz

.I.J.\
I M R N

¥ b

deiia segu]{u-—eta (saidas_des1[i]-saidaij)*(saida[ij*(i-saidafi])*saida2[jj) +

alfa*delia_segili};



pesos_seg(jj[ij += detta_segfilfjj;

[

-

:

it
I

i Fungéo que recaiGuia os pesos entre a camada escondida & a camada d
I

void recaique_prim(int saidas_desi{5]){

. LT

soma+= (saidas_desiikj-saidajkj)*pesos_segik][i];

soma *=saida2lj* -"“idaZ{i});

detta_prim(j}{i] = eta* vet_entfj]*(1-vei _entfjjj"soma + aifa*deita_prim{j{i;
pesos_primfjifil+=deita _primiiiL

[y

#endif

’l*****k*********l**************F'

H i*t****itt***ﬁ**k********l
¥l

3
o
)
=
a
35
i
=
o
A
3]
@
=3
(2]}

A2.4. ima.nh

i
#ifndef _funcoes_h
#define _funcoes_h

#define TAM 512
#define MASK 16

1 I 4.
#include <math.h>

I3
g
I

/i Fung@o: BmpToini
ff‘ rinaiidade: Recebe uma imagem gue ueve ter o tamanho de

e et Py rery s

I TANXTAM pix&ls, & constr6i uma matr iz de mesmo tamanho Coim
/i os vaiores inteiros (0 a 255) que representam os ions de

# cinza dos pixals

II
double auxy nwﬂﬂ-nw‘j,
doubie auxi[32][32];

int matriz[TAMITAM];
struct anguio{

doubiz s,c;

I

pre

Entrada



// Rotina que transforma a imagem de tons de cinza para uma matriz de inteiros
i

void r.'umpluunu image *imagem,int matiziTAMI[TAM])
for (int i=0;i<TAM;i++)
for (int j=0;j<TAM;j++)
matriz{ilfjl=imagem->Canvas->Pixcls[f][i|&0xFF;

}

i
/f Fungao: intToBmp
/f Finalidade: Exatamente o process
/i rior, BmpToini.
it
void intToBmp(Timage *image, ini matriz[TAMITTAM])
int h,w,
h=image->Heighti;
w=imaga->Width;
image->Visibie=false
i e->Haight=TAM,
undge-w'\ildin— T AM;
for{int i=0;i<TAM;i++)
for (int j=0;j<TAi;j++)
image->Canvas->Pixels[jjlij=matriz[i][j*65703;
iri“:age->Height=h;
image->Width=w;
image-=>Visibie=irue;

C!
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ir
/f Fungéo que caicuia o campo de orientagao
/f das cristas e dos vales

I
i

void CaiCampo(ini matriz[ TAM][TAM]){

int s{0;

int kmin;

int kmax;

int smax=0;

int smin=1021;

ini soma=0;

arirvala rvvmadiae

<1 iEuIU i I'UUIG,

media.c=0;
o—y

media. 5=u,

ror( int i=4;i<TAM-4;i++)

IUI ‘ln’ J—‘f j<Tnle"’f,j++}{

s{1}=matnz{i-4]jjrmairizji- jm'f'lilBEHZ{I'*'ZI[ﬁ‘ﬂlidil]l[l"“iiu I

3{2]=1 natrizfi-4}jj+ 2+ matrizfi-2] +1Fmatizii+ 21+ matniz{i+4][j-2];
s[3j=mairizji-4j[j+4]+mairizfj-2] j[j+2]+mall‘lz[l+z.']|j-2]+maII‘iZil+4]|'j-4],
o|_4] ulat'SZ[I 2""'4]"ma‘t”2{i- .]{]+°‘*ﬁatnz{i+1]ﬁ—"’ matsiz| +2][| 4 i
s{5j=malriz{ijfj- 4J+mainq'lj[|~2]+mdinz{|ju+2;+r'nair1z[r][]+4],
s[G=matriz[i-2]{j-4]+matriz[i-13j-2}4 matriz{i+1][j+2}+matniz{i+2][j+4];
5[7]=mairizii-4}u-4j+matriz{i-2]ij—2]+mailiz[i+2][i+2j+matdzii+4]{i+4];
s{8}=matriz{i-4]fj-2]+matriz[i-2]{j- 1]+matriz[i+ 2][j+ 1] irmatizfit4yi+2);



for(int k=1;k<=8;k++){
somat+=s[k];
if {s[kj>smax) {smax=s[k]; kimax=K;}
if (sfkj=<smin) {smin=sk}; kmin=k;}
i
if ((4*matrizfi]fjl+smax+smin)>3*soma/8){
auxjijfij=255;
switch {(kmax) {
case 1: {angfijfi].s=sin{3.14159);
ang(ijfjl.c=cos(3.14159);break;}
case 2: {angfijijj.s=sin(2*3.14159/3);
angliilil.c=cos(2*3.14159/3);break;}
case 3: {ang[ij{i].s=sin{2*3.14159/4);
angfijli.c=cos{2*3.14159/4);break;}
case 4: {angjilfij.s=sin(2*3.1415%/6);
anglijfil-s=sin{2*3.14155/5);break:}
- {angiilijl.s=0;
anglilil.c=1, break}
case &: {angiijijj.s=sin(10*3.141595/6),
o

anglilli}.c=cos{10*3.14159/6);break;}

W

case

case 7: {angjijjjj.s=sin(6*3.14159/4);
annlilli] Amanafa®)
auglij[f].u COS .

« 1 '
case 8: {angfiijj.s=sin{4*3.1415%/3);

angfijlil.c=cos{4*3.1

i
1
)
eise{
auxfifi=s;
switch (kmin) {

case 1. {ang{ij{].s=sin(3.14159};

oy 1
angjiljjj.c=cos(2*3.14159/3);break;}

case 3: {ang[ilfi}. s=sin{2*3.14159/4};
angiij{jj.c=cos(2*3.14159/4);break;}

case 4: {angfijii;.s=5in(2*3.14155/6);
angfijijj.s=sin(2*3.14159/6);break;}

case &: {anglilli}.>=0;
angiijij.c=1; breai;}
case §: {angfi]{j].s=sin{10*3.14159/6);
ang(ijj].c=cos(10*3.14159/6);break;}
case 7: {ang{ilij]. s=sin{€*3.14159/4);
angiijjij.c=cos(6*3.1415%/4),break;}
case 8 {angfilfj].s=sin{4*3.14159/2);

ey a4 -

angjijfij. c=cos{4*3.14159/3); break:}

G e e

for (int u=1;u<TAM/MASK-1;u++)
for (int v=1,v<TAM/MASK-1;v++}{

for (int i=G;i<MASK;i++)
for (int j=0;j<MASKj++){
media.ct=ang{i+u*MASK][j+v*MASK].c;
media.st=ang{i+u*MASK][[+v*MASK].s;



if {media.s>0)
{u-1jjv-1j=acos(media.c)/2;

auxiju-ijiv-ij= 3.1415 - acos{media.cy/2;

media.c=0;

media.s=G;
for(int i=0;i<TAM/MASK-Z;i++)
for(int =0, < TAMMASIK-2;j++);

B

#endif

/
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A.2.5. Programa Principal

i

#inciude <vciwel.h>
#pragma hdrstop
#include "aiquivos.h" /*
#include "cadastro.h" /* uss
#include "ima.h"
#include "red.h"
#inciude "trein.h"
#inciude <math._h>
#inciude <string.ih>
#include <sidio.h>
#inciude <sidiib>
#inciude "Uniii.n"
#include "Unit2.h"

Frnloda M Inia Ky
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ncludes que carregarit as vaiias biiote
gas pelo

i
#pragma rescurce "*.dfim"
Trom1 *Formi;

#

__fasicail Tromi:TFormi{TComponent® Cwner)

: Trom{Owner)

e e £
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i

// Rotina que carrega um arquive do tipo bmp

It

void __fastcall TForm1::CpenClick{TCbject *Sender)

i -
if (OpenDialog1->Exacute())
image1->Pigture->LoadrF FromFile(OpenDialogi->FileName);

1

¥

/.

4

#/ Rotina que binariza uma certa impressio digital

p

void __fasteall TForm1::BinarizarClick(TObject *Sender)

{

Bmp‘Tujluamage" Jmatr L i
CaiCampo(matriz),

intToBmp(lmage2,matriz);

#
/ Rotina que treina a rede
it
void __fastcaii TForm1::TreinarRedeClick(T Object “Sender)

T
1

Edit1->Text = "Processando";

Ediﬂ-}'u'pﬁateu,

Form3->Enabied=irue;  // Form onde serdo digitadas as entradas necessaiias
Form3->Visible=true;

3
/i
#/ Roiina que classfica uma impress&o digitai
i
void __ fastcaii TFormi::CiassificarCiick(T Object *Sender)
i
Editf->Text = “Processando®;
Edit1->Update();
if (OpenDiaiog”r-:-Execute())
limage1- >P.cture->LoadFromFife(OpenDia!cg1—>Fi£eName};
Imagei->Visibie=true;
BmpTO.nt(h |c|_ge1 Illﬂthj,
CaiCampo(mairiz);
IntT Guallpﬂmﬁgeg matriz);
Form2->Enabied=irue; // Form onde serfio digitadas as entradas necessarias
Form2->Visible=trye:
}

// Rotina que cadastra uma nova impresséo
I
void __fasicail TFormi::CadastrarClick(TObject *Sende




double en[5],enqua=1;
int i j,par,total,saidas_des[5};
ciock_{ start;
par=¢;

start = clock();
inipesos();
saiva_pesos();

Form3->Edit1->GetTextBuf(arg_saida,50); // Leitura dos nomes dos
Form3->Edit3->GeiTexiBuf{(nome_arg1,50); // arquivos necessarios ao
Form3->Edit4->GetTextBuf{nome_arg2,50); // treinamento

totai = StrToint(Fomrn3->Edit2->Texi);

f{{nomie_arg3 = fopen{arg_saida,"r)== NULL){ / Verificacio da existenci

Form3->Edil1->Text = "Arguivo Inexisienie”; / do arguivo
e,
Ise{
whiie{(errqua>0.5) & (par<=totaij){ //
rewind(nomie_arg3);
if{carrega_pesos(j==0)
returm:;
for{par=1i;par<=total;par++){
abre_arg{lmage1,par);
carrega_saida(nome_arq3,saidas_des);
Fom3->Enabled=false;
Form3->Visible=faise;
BmpTolnt{image1,matriz);
CaiCampoi{matriz);
IntToBmp(image2,matriz);
imagei->Update();
image2->Update(;
Edii3->Text = intToSir{par);
Sdita >Update();

Loop de treinamenio

L8 H ooy diCy),

P e Py

Ory=uiisoglI+)
Ervmfim—i

vet_enifi+i*32] = auxi[ijjj;
zeramatriz();
idaz,vei_ent);
m{saitda2,saidad,saida);
mostra_vaior(ciasi,cias2,cias3,cias4,cias5);
clasi->Update();
ciasz2->Update();
clasd->Update();
clas4->Updaie();
class->Update();

—_—
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for{i=0;i<5;i++}
erlii=saidas_dessjil-

errqua = (pow(eri],2)+pow(er2],2)+pow(err3],2)+pow(eni4].2)+pow(errs].2})/Z;
rr{]' ua=0.5 \.}}1

lecalque_seg\saidas_des);

recalque_prim{saidas_des);

salva_pesos();

k]

}

-

_— e

o

Editi->Text= "Saivando Pesos”;
Edit‘;->bpdateg,

salva_pesos();

it1->Texd= "Fim do Treinamento";
image’i->Visibie=faise;

Imags2->Visible=false;

Edit2->Text = {ciock{j-star)/ CLK_TCK; / Caicuio do tempo de processamerio
I_ulta >Text = ""

Edii4->Texti = =

N

;nt i,j;

for{j=0;"°2'j++‘

vei_entfj+i*32] = auxijii];
Form2->Edit1->GetTexiBuf(nome_arg1.50);
FormzZ->EditZ->GeiTexiBuf(nome_arg2,50);
if{carrega_pesos()==0)

return;
A}ne{
FormzZ->Enabied=faise;
Enrm®, aidnlae—faloa-

Form2->Visible=false;
zeramatnz{};

aalda1(aaid32 vet_ant)
saidafim{saidaz,saida3 saida)'

minotern ua!oﬂ’nlnﬁd AloaaD nlne’ nlas4 CI a

AACOD |UIGGL Wit ) Sl ,

i
Editt1->Texi = "Fim ao FProcessamento”;
Ediii->Update();
Edit2>Taxt = {{clock{(}-comeco)/CLK_TCHK); //Calcula o temipo de processamento

s



